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Abstract

Objective: Artificial intelligence has made a significant breakthrough with its ability to
analyze complex data and identify hidden patterns, especially in the field of gait biomechanics.
The aim of this study was to review and classify different Al approaches in gait biomechanics
analysis.

Methods: The present study was a systematic review. Searches were conducted in the Web of
Science, SID, Magiran, Scopus, ISC, PubMed, and Google Scholar databases between 2020
and 2025 in both Persian and English. Inclusion criteria comprised experimental or applied
studies using artificial intelligence for the analysis of human gait, involving data from healthy
individuals or patients with neurological, muscular, or musculoskeletal conditions; reporting
model performance metrics (e.g., accuracy, sensitivity, specificity) or measurable
biomechanical parameters; employing direct motion capture or wearable/imaging sensors; and
utilizing cross-sectional designs, algorithm validation, or clinical* prediction/diagnostic
approaches. Exclusion criteria included theoretical studies, narrative reviewswithout original
data, editorials, case reports, animal studies or simulations without human data, studies relying
solely on classical statistical methods without artificial intelligence;.articles with incomplete
data or limited accessibility, studies focusing on activities other than gait,-and studies with low
methodological quality. Of the 85 identified articles, 13.studies met the eligibility criteria.
Study quality was assessed using the Downs and Black questionnaire.

Findings: Based on the review of 14 studies on artificial“intelligence and gait (including 7
studies on healthy individuals and 7 on patients), it was found that more than half of the studies
(53.8%) used wearable sensors, approximately 23.1% employed markerless systems such as
KinaTrax, 23% utilized machine/deep learning methods, and 10% applied conventional motion
analysis systems. Cumulative analysis-indicated that wearable sensors, particularly when
combined with machine learning models.such as Stack and SVR, were highly capable of
classifying gait episodes (mean sensitivity 0.961 and MAE% below 2.1% for key parameters),
reflecting the relatively high accuracy of these approaches. In studies using machine learning,
the combination of ResNet101 and Naive Bayes performed well in classifying body posture
(sensitivity 0.87), and LSTM models also yielded notable results for gait path prediction in VR
environments, particularly for short-term predictions (14.5 mm error), although long-term
predictions required additional data such as eye-tracking. Furthermore, the use of smart insoles
combined with.the'RF algorithm demonstrated the feasibility of extracting digital biomarkers
for managing conditions such as sarcopenia, although the number of studies was limited and
sample-sizes were small.

Conclusion: The present findings indicate that the combination of wearable sensors
particularly self-powered triboelectric sensors with machine and deep learning methods (such
as SVR, ResNet101, and LSTM) has considerable potential for analyzing biomechanical gait
parameters and predicting movement trajectories in laboratory and simulated environments,
such as VR. However, the existing evidence is limited to small sample sizes and controlled
conditions, and few studies have been conducted on actual patients or in clinical settings.
Therefore, any clinical or rehabilitation applications of these technologies still require further
research and validation in real-world environments.

Keywords: Artificial intelligence, Biomechanical analysis, Walking.



Introduction

Gait is one of the most fundamental human motor activities that plays a decisive role in
neuromuscular health, balance, functional independence, and quality of life. Any change in
gait patterns can indicate the occurrence or progression of motor disorders, increased risk of
falls, and decreased ability to perform daily activities. Therefore, accurate and quantitative
gait analysis is considered as one of the key tools in assessing motor function, diagnosing
neuroskeletal disorders, and monitoring the effectiveness of therapeutic and rehabilitation
interventions (1-3). Despite its clinical importance, traditional gait analysis methads are
mainly limited to laboratory environments and rely on complex optical systems, expensive
equipment, and time-consuming analyses that require specialized personnel to perform,

limiting their generalizability and widespread use in real-world settings (4).

In recent years, significant advances in the field of artificial intelligence (Al) have had a
significant impact on human movement analysis and:sports biomechanics. The development
of advanced computational methods and the reduction.of data processing costs have made
computer-based analyses more technically and-economically feasible (5). Al is increasingly
being used in the fields of sport and movement sciences for performance analysis, movement
pattern recognition, decision-making optimization, and prediction of movement behavior,
and has revolutionized traditional approaches to evaluation and analysis. This technology has
increased the accuracy of movement analysis, scoring, and prediction of athlete performance
and even fan behavior, ‘opening new horizons in understanding the complexity of human
movement (6). However, many existing studies have taken a largely descriptive approach,
focusing more on demonstrating the general capabilities of Al than critically analyzing its role
in specific problems such as human gait dynamics (7). Along with the development of artificial
intelligence; technological advances in small and lightweight wearable sensors, especially
inertial measurement units, have enabled the recording of movement data over long periods
of time and in natural conditions of daily life. These sensors have created new opportunities
for researchers and clinicians to study gait outside of controlled laboratory environments and
in real-world contexts. In contrast to classical gait indices such as speed, stride length, and
stride time, accelerometric and gyroscopic data allow the extraction of a wide range of
advanced dynamic indices that describe features such as variability, regularity,

synchronization, symmetry, smoothness of movement, postural stability, and predictability



of gait (8, 9). In this regard, recent studies have shown that combining data from wearable
sensors with artificial intelligence algorithms can be used as a digital biomarker for screening
and early diagnosis of neurological diseases. In particular, changes in gait patterns have been
proposed as a non-invasive and cost-effective indicator for identifying diseases such as
dementia. The development of these digital biomarkers is expected to follow the
development of clinical biomarkers; however, challenges such as clinical validation,

interpretation of results, and reliability of models remain (7).

On the other hand, machine learning and deep learning algorithms have been recognized as
powerful tools for analyzing complex human movement data. Convolutionalneural networks
(CNN) in processing image and video motion data, and recurrent neural networks (RNN and
LSTM) in analyzing time-serial data, have enabled more accurate identification of gait patterns
(10). These models are able to extract subtle features such as step incoordination, postural
imbalances, and body dynamic deviations from sensory or-image data, thus playing an
important role in the early diagnosis of neuroskeletaltdisorders (11). In addition, the
integration of multi-source data from wearable sensors and machine vision systems has
enabled more comprehensive modeling of gait biomechanics, paving the way for continuous
monitoring of gait status and prediction of«the risk of falls or muscle injuries. Despite the
significant growth of studies on the application of Al in gait analysis, previous reviews have
often examined algorithms or data‘types separately, with little attention paid to systematic
and critical comparisons of different approaches, methodological limitations, challenges of
clinical implementation;.and the reliability of results. Therefore, the main research gap lies in
the lack of@ comprehensive and critical review that can comprehensively examine the
application of\Al algorithms in the biomechanical analysis of human gait and analyze the
differences, advantages, and shortcomings of approaches based on wearable sensors and
machine vision. The innovation of the present study lies in responding to this need; so that
this study goes beyond a mere description of the technologies to critically evaluate the
accuracy, reliability, and clinical applicability of Al-based methods and outlines future
research directions and potential applications in sports medicine, rehabilitation, and
movement sciences. Accordingly, the aim of the present study is a comprehensive and critical

review of artificial intelligence approaches in the biomechanical analysis of human gait.



Methods and Materials

This study was a systematic review. A search for articles between 2020 and 2025 was
conducted in the Web of Science citation databases, the Center for Scientific Information and
Academic Jihad, Magiran, Scopus, the Islamic World Science Citation Database, PubMed, and
Google Scholar in both Persian and English. The search strategy included keywords related to
artificial intelligence, machine learning, deep learning, walking, gait analysis, biomechanics,
kinetics, and kinematics, and combined them with AND and OR operators. InclUsion criteria
included experimental or applied studies using artificial intelligence in gait analysis, using real-
world data from human populations (healthy individuals or neurological, muscular, or
musculoskeletal patients), providing performance indicators of models (such as accuracy,
sensitivity, specificity) or measurable biomechanical parameters, focusing on human gait with
direct data recording or wearable/imaging sensors, and publicationin Persian or English.
Study designs included cross-sectional, algorithm walidation, and clinical
prediction/diagnostic studies. Exclusion criteria included theoretical studies or literature
reviews without data, editorials, case reports, animal studies or simulations without real
human data, use of classical statistical methods without Al, articles with incomplete or
duplicate access, conference proceedings, and studies with low methodological quality. As a
result, of the total 85 identified articles, 53 articles were excluded due to lack of focus on
walking or duplication, 19 articles.were excluded due to review or lack of use of Al, and finally

13 articles were selected for the'final analysis.
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Figure 1- The process of reviewing and selecting articles.

The quality of the articles was assessed using the Dunn and Black questionnaire (23). In case
of any discrepancy in the scoring between the authors, the items in question were reviewed

individually, and disagreements were resolved through group consultation and discussion to
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minimize the possibility of errors in the evaluation process. Based on the results obtained, the
average quality score of the articles reviewed in this study, according to the Dunn and Black
guestionnaire, was 20.67%. It is worth noting that the following relationship was used to
calculate the percentage of quality of the articles in the relevant column: 100*(31 / total
score) = Article quality (in percentage) According to Table 1, the quality of the articles was
assessed using the Dunn and Black questionnaire (23). This questionnaire consists of 27
guestions, each question being scored between 0 and 1; with the exception of'question 5,
which is scored 0, 1, and 2 points, such that the number "1" indicates approval and the
number "0" indicates rejection or absence of that feature in the article. It should be noted
that only in question number 27, a score in the range of 0 to 5 is assigned. A score of 5 or
close to it indicates a high statistical power of the article, and on the contrary, lower scores
indicate a weaker statistical power of the article in the same field. In order to prevent the
inclusion of duplicate studies, all articles identified insthe screening stages were carefully
reviewed in terms of the names of the authors, year. of publication, place of study, population
studied, and study period. In cases where similarities were observed between the articles,
their full texts were carefully compared to examine the possibility of using common data or
population. Finally, it was determined.that none of the articles included in the final review

were duplicates and each study dealt with'independent data or analyses.

Results

Based on the studies conducted.on the artificial intelligence approach to walking, 13 articles
were obtained according to the keywords and inclusion and exclusion criteria. In the field of
using artificial intelligence during walking on healthy adults, 7 studies were obtained, and the
number.of participants in these studies was 1072 healthy individuals in general (1, 4-6, 9-11).
The studies that used artificial intelligence in adults with diseases were 6 studies, including
patients with cerebral palsy (24), elderly people without dementia (4), people with
Parkinson's disease (2), people with walking problems (3), patients with sarcopenia (25),
people with unilateral pain when walking (7), and people with motor disabilities. The
statistical sample size of these studies was 3737 people. In these studies, 15.4% of the articles
used a markerless motion recording system (1, 2). 53.8% of the articles used wearable sensors
(3-9), 23.1% used machine learning (9—11), and 10% used a motion analysis system (25).

Studies using a marker-free motion capture system concluded that the KinaTrax marker-free
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motion capture system provided reliable spatiotemporal measurements within and between
sessions, along with reliable kinematics in the sagittal and frontal planes; validation showed
that intraclass correlation coefficients confirmed excellent agreement for all spatial
parameters with the marker-based reference system, while temporal variables also showed
good agreement, with the exception of oscillation time, where agreement was reported as
moderate to almost perfect (1, 2). Also, studies using wearable sensors concluded that the
proposed Al models, especially the Stack architecture, demonstrated a high ability'to correctly
classify gait episodes (mean sensitivity 0.961 and AUC 0.833), despite the challenges posed
by the sensor placement on the back of patients with gait disorders." Furthermore, the
reduction of the feature space helped improve the performance of most classifiers; also, the
SVR models demonstrated excellent accuracy in parameter analysis with very low mean
absolute errors (MAE%) (less than 1.2%) for key parameters such as speed and stride length.
On the other hand, triboelectric sensors, with an accuracy of more than 95% in recognizing
the identity of the person, assessing the motor disability. and the movement status, were not
only able to harvest the energy they needed from slow movements, but also enabled real-
time analysis of the data, which, in general, comprehensively confirms the reliability and
efficiency of the sensors for evaluating the walking parameters (3-9). Studies on machine
learning during walking also showed. that‘approaches based on machine learning and deep
learning showed high efficiency in asséssing the movement status and predicting the walking
path. In the field of body posture estimation and classification, a combined approach
including mobile phone video recording, cloud storage and Fusion Deep Learning achieved
strong results; so that the combination of the ResNet101 model and the Naive Bayes classifier
achievedasensitivity of 0.87 and a specificity of 0.84. Furthermore, in predicting walking path,
LSTM models proved their superiority in virtual reality (VR) environments; the LSTM model
based on'position and orientation data provided the best short-term prediction (50 ms) with
an error of 14.5 mm, while the integration of eye-tracking data into long-term predictions (2.5
s) with an error of 73.65 cm showed a significant advantage in this time interval (9-11). A
study using a motion capture system also concluded that by combining smart insole data and
estimating body posture by an RF machine learning model, studies show that important digital
biomarkers can be extracted with high accuracy by analyzing variables such as hip and ankle
motion, which has significant potential for the development of more advanced diagnostic and

therapeutic interventions, especially for the management of diseases such as sarcopenia (25).
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Table 1- Quality assessment of articles based on the Downs and Black questionnaire.

Authors 5 6 7 8 o 10 11 [ 22 13| 14 15| 16 [ 17 | 18] 19| 20| 21 22 [ 23] 24 [ 25| 26 [ 27 Quality percentage
Schoenwether et 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 0 0 0 4 77.41
al. 2025 (1)

Salami et al. 2025 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 0 0 1 4 80.64
(24)

Shuichi et al. 2024 1 1 1 0 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 0 1 4 77.41
(4)

Ripic et al. 2023 (2) 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 1 5 87.09

Peimankar et al. 0 1 1 1 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 4 83.87

2023 (3)

Kim et al. 2023 (25) 0 1 1 0 1 1 1 1 1 0 ) 1 1 1 0 1 0 1 1 1 0 0 5 74.19

Galasso et al. 2023 0 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 0 1 1 0 1 4 74.19
(s)

Lee et al. 2022 (11) 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1 4 83.87

Valerie et al. 2022 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 5 90.32
(6)

Bacon et al. 2022 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 0 1 4 83.87
(7)

Gou et al. 2021 (8) 0 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 0 1 5 80.64

Bremer et al. 2021 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1 5 87.09
(10)
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Zhang et al. 2020
(9

80.64

Peimankar et al.
2023 (3)

83.87

Kim et al. 2023 (25)

83.87

Galasso et al. 2023
(5)

77.41

Lee et al. 2022 (11)

93.54

Valerie et al. 2022
(6)

87.09

Bacon et al. 2022
(7

80.64

Gou et al. 2021 (8)

93.54

Bremer et al. 2021
(10)

87.09
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Table 2- Studies based on the use of artificial intelligence during walking.

Author/Year Purpose Sample Protocol Tools Result
Schoenwether et al. | Reliability of Al-based markerless motion capturein | 9 healthy adults Gait | kina trax system The KinaTrax markerless motion capture system
2025 (1) gait analysis of healthy adults provides reliable spatiotemporal measurements within
and between sessions along with reliable kinematic
measurements in the sagittal and frontal planes.

Salami et al. 2025 | Investigating the relationship between gait | 622 patients Gait | Artificial Intelligence Model | The hip joint showed the highest population of green

(24) | kinematics and joint torques by associating | with cerebral - Clinical “Labeling System | labels (84%), while the ankle joint had the lowest (50%).
kinematic inputs with their corresponding output | palsy (This system . divides the | Regression differences in joint kinematic scores and
labels results into three categories | gait profile were observed across all labels. The LDA

based on nRMSE: Green: | model achieved an accuracy of 85.2% and an F-score of
Acceptable, Yellow: | 92% for predicting green labels in hip joint torque.
Cautiously Acceptable, Red: | Furthermore, more severe patient conditions were
Unacceptable) associated with increased red label predictions.

Shuichi et al. 2024 (4) | Feasibility study of linear acceleration and angular | 879 people Gait | Sensor The average sensitivity, specificity, and area under the
velocity analysis with the help of artificial | without curve of the models were 0.961, 0.643, and 0.833,
intelligence (Al) while walking dementia respectively, in the 30 experimental data sets.

Ripic et al. 2023 (2) Assessing the accuracy of spatiotemporal | 57 patients with Gait | Markerless motion | The interclass correlation coefficients showed excellent
parameters in a marker-free system with an | Parkinson's recording system agreement between the marker-free system and a
updated marker-free model, coordinate-based gait |.disease marker-based reference system for all spatial
events and speed on adults with Parkinson's disease parameters. The temporal variables were similar,

except for oscillation time, which showed good
agreement. The agreement correlation coefficients
were similar for all items except oscillation time, which
showed moderate to almost perfect agreement.

Peimankar et al. 2023 | Development of aimachine learning (ML) algorithm | 20 participants Gait | Sensor (accelerometer | Experimental results confirmed that the proposed

(3)

for analyzing accelerometer data and accurately
classifying walking activity in patients with walking
problems, especially dementia and Alzheimer's.

with
problems

walking

installed on participants)

models (especially Stack) are capable of correctly
classifying gait episodes despite the challenging
placement of the sensor on the back of patients with
gait disorders.
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Kim et al. 2023 (25) | Investigation of sarcopenia classification model for | 83 patients with Gait | Smart insole and motion | The convergence of precise sensor technologies (smart
musculoskeletal patients using smart insoles and | sarcoidosis analysis system with | soles) with advanced image processing methods (body
gait analysis with artificial intelligence artificial intelligence posture', estimation), and their analysis by robust

machine learning models such as RF, provides a
powerful approach to extract vital digital biomarkers,
especially in key areas of the hip and ankle, paving the
way for more effective diagnosis and management of
physical disorders such as sarcopenia.

Galasso et al. 2023 | Predicting physical activity level from kinematic gait | 37 healthy Gait || Sensor Treadmill - Wearable | Reducing the feature space increases performance for

(5) | data using machine learning techniques individuals (24 Wireless Inertial | most of the classifiers considered. Analysis of the best
males and 13 Measurement Unit Sensors performing classifiers (KNN, Random Forest, and
females) RSesLib KNN) showed the behavior of accuracy with

varying the number of features considered,

Lee et al. 2022 (11) | Identifying the body posture of young people in | 35 healthy young Gait | Machine learning | The proposed approach, which combines mobile phone
walking videos using a hybrid artificial intelligence | adults algorithms, mobile phone | camera recording, cloud storage, and fusion deep
method camera, non-invasive | learning, successfully performed body posture

tracking devices estimation and classification. The maximum specificity
and sensitivity obtained using the combination of
ResNet101 model and Naive Bayes classifier were 0.84
and 0.87, respectively.

Valerie et al. 2022 (6) | Development of a multi-class classifier for |.80 healthy Gait | Sensor: Inertial | When the six-state model was used as a simple binary
simultaneous detection of activity (normal walking, | people Measurement Unit (IMU) | classifier (standing/swinging only, regardless of activity
stair climbing, stair descending) and gait.phase data collected from thigh | type), it achieved an accuracy of 97.1%, which may be
(stance and swing) and shank sufficient for control in real-world lower limb

exoskeletons.
Bacon et al. 2022 (7) | Association of.gait metrics with mild'unilateral knee | 2066 people Gait | Sensor Sensors are effectively used to assess gait parameters.
pain while walking using machine'learning with  unilateral In particular, the reliability of data collection from
pain when Iocat_ions such as the waist, thigh, and foot has been
walking confirmed.
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Gou et al. 2021 (8)

The main goal of this research was to design and
validate a self-powered smart cane that, through
triboelectric sensors (TENG) connected to leg
movement, can simultaneously generate the
energy necessary for its operation, and use deep
learning algorithms to accurately and in real-time
monitor the user's movement status, identity, and
level of disability, providing vital information to
help improve safety and clinical evaluation.

Gait

Triboelectric sensors

The triboelectric dogs were able to self-supply the
necessary energy from their slow steps and
simultaneously, with an accuracy of over 95%,
recognize the person's identity, assess motor disability,
and movement status using deep learning models,
demonstrating the system's success in self-powering
and real-time data analysis as the user walked.

Bremer et al. 2021
(10)

Predicting future position from natural gait and eye
movements with machine learning

Gait

Machine Learning “Model
(GRU and LSTM)

The LSTM model using position and orientation data
provides the best prediction in the short term (50 ms)
with an error of 14.5 mm, while the best long term
prediction (2.5 s) with an error of 73.65 cm was
achieved by the LSTM model that also included eye
tracking data; these findings confirm that LSTM models
are suitable for predicting walking paths in VR
environments and that eye tracking data has a
significant advantage, especially for long term
predictions at short distances.

Zhang et al. 2020 (9)

Accurate analysis of walking and running strides
using machine learning models

10 elderly
people with
mobility
disabilities

18 healthy
people

14 healthy
people

Gait

Wearable Sensor: Custom-
engineered smart shoe soles
called Sport Sole that are
equipped with sensors.
Machine Learning Model:
Support Vector Regression
(SVR).

The SVR models showed excellent intraclass correlation
coefficients (ICC) across all analyzed parameters. The
mean absolute errors percent (MAE%) for gait stride
length, speed, and foot clearance distance were 1.37,
1.23, and 2.08 percent, respectively. These results
demonstrate the high accuracy of this machine learning
approach for improving the performance of wearable
sensors.




Discussion

The aim of the present study was to review artificial intelligence approaches in human gait
biomechanics. The results showed that wearable sensors achieved a sensitivity of 0.961 and
an area under the receiver operating characteristic curve of 0.833, and support vector
regression models showed an average absolute percentage error of less than 1.2% for
parameters such as speed and stride length; triboelectric sensors also provided an accuracy
of over 95% in recognizing individuals. In this study, the findings of researchers who.used a
marker-free gait recording system during gait showed that the marker-free gaitirecording
system can provide spatiotemporal and kinematic measurements in the sagittal'and frontal
planes, and its correlation coefficients for spatial parameters showed relatively good
agreement with the reference system. However, only the oscillation time parameter in
measuring temporal variables showed moderate to almost perfect agreement with the
reference system, indicating its limitations comparedto. reference systems (1, 2). The
advantages of these studies include the use of patients.with gait disorders, but the sample
sizes of some studies were limited. Studies on marker less motion recording systems have
shown that this markerless motion tracking system provides reliable spatial measurements,
but its direct clinical application still requires further validation. Studies using gait sensors
have shown that wearable 'sensors, especially triboelectric sensors, when combined with
advanced machine learning methods; can analyze gait parameters, classify activities, and
detect the movement status‘of individuals (3-9). These systems have shown acceptable
performance in laboratory conditions, but results may vary in real-world settings and with
different_patients. The main advantages include the accuracy of parameter estimation with
relatively low, errors, the self-sufficiency of energy of triboelectric sensors, and the high
performance in identifying and detecting movement disabilities. Disadvantages and
limitationsinclude fluctuations in feature performance under difficult mounting conditions
(such as on the patient’s back, which reached 0.643) and dependence on careful optimization
of the machine learning model and feature selection, which requires tuning for each specific
application scenario. Studies using machine learning have shown that combining video
recording with a mobile phone camera, cloud storage, and deep learning fusion allow for body
pose estimation and classification, and have achieved relatively successful results. The

combination of a deep convolutional neural network model and a naive Bayes classifier has
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shown acceptable performance in hand classification; long-term memory models have also
been suitable for predicting walking paths in a virtual reality environment. In short-term
predictions (50 ms), the error was 14.5 mm, and in longer-term predictions (2.5 s), the error
was reduced to 73.65 cm (9-11). The advantages of this approach include the ease of data
collection with a mobile phone camera and the use of cloud storage; however, the
disadvantages include potential delays in data transfer and heavy processing of deep learning
models and the dependence on image quality in different environments. Limitations of the
present study include the limited number of existing studies on the use of Al in gait analysis,
the lack of examination of athletic and elderly populations, the focus of some studies on small
samples or specific groups, and the lack of standardization in methods. Therefore,
generalizations of the findings should be made with caution, and direct clinical application of
these technologies still requires larger and more comprehensive ‘studies. Future studies
should be conducted with larger and more diverse clinical populations and evaluate the
performance of Al algorithms in real-world settings. Also, the development of standardized
frameworks for data collection and model interpretation could improve the clinical

application of these technologies.

Conclusion

The findings of this review show that'the use of artificial intelligence and machine learning
methods plays an effective role in improving the accuracy, reliability, and interpretability of
data obtained from wearable sensors and markerless motion recording systems in human gait
analysis. The.results indicate that these approaches can largely compensate for the inherent
limitations. of traditional sensors and methods and enable the extraction of reliable
spatiotemporal and kinematic parameters. Despite promising performance in laboratory
conditions and some clinical populations, the available evidence suggests that studies with
larger sample sizes, standardized designs, and evaluation in real-world settings are necessary

for the generalizability of the results and widespread clinical application.
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