

Accepted Manuscript

Accepted Manuscript (Uncorrected Proof)

Title: The Role of Artificial Intelligence in Human Gait Biomechanics: A Systematic Review

Authors: Leila Sabouri¹, Ebrahim Piri², AmirAli Jafarnezhadgero^{2,*}

1. *Department of Sports Biomechanics, Faculty of Sports Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.*
2. *Department of Sports Biomechanics, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, Iran.*

To appear in: **Archives of Rehabilitation**

Received date: 2025/12/03

Accepted date: 2026/02/01

First Online Published: 2026/02/09

This is a “Just Accepted” manuscript, which has been examined by the peer-review process and has been accepted for publication. A “Just Accepted” manuscript is published online shortly after its acceptance, which is prior to technical editing and formatting and author proofing. Archives of Rehabilitation provides “Just Accepted” as an optional service which allows authors to make their results available to the research community as soon as possible after acceptance. After a manuscript has been technically edited and formatted, it will be removed from the “Just Accepted” Website and published as a published article. Please note that technical editing may introduce minor changes to the manuscript text and/or graphics which may affect the content, and all legal disclaimers that apply to the journal pertain.

Please cite this article as:

Sabouri L, Piri E, Jafarnezhadgero AA. [The Role of Artificial Intelligence in Human Gait Biomechanics: A Systematic Review (Persian)]. Archives of Rehabilitation. Forthcoming 2026.

Abstract

Objective: Artificial intelligence has made a significant breakthrough with its ability to analyze complex data and identify hidden patterns, especially in the field of gait biomechanics. The aim of this study was to review and classify different AI approaches in gait biomechanics analysis.

Methods: The present study was a systematic review. Searches were conducted in the Web of Science, SID, Magiran, Scopus, ISC, PubMed, and Google Scholar databases between 2020 and 2025 in both Persian and English. Inclusion criteria comprised experimental or applied studies using artificial intelligence for the analysis of human gait, involving data from healthy individuals or patients with neurological, muscular, or musculoskeletal conditions; reporting model performance metrics (e.g., accuracy, sensitivity, specificity) or measurable biomechanical parameters; employing direct motion capture or wearable/imaging sensors; and utilizing cross-sectional designs, algorithm validation, or clinical prediction/diagnostic approaches. Exclusion criteria included theoretical studies, narrative reviews without original data, editorials, case reports, animal studies or simulations without human data, studies relying solely on classical statistical methods without artificial intelligence, articles with incomplete data or limited accessibility, studies focusing on activities other than gait, and studies with low methodological quality. Of the 85 identified articles, 13 studies met the eligibility criteria. Study quality was assessed using the Downs and Black questionnaire.

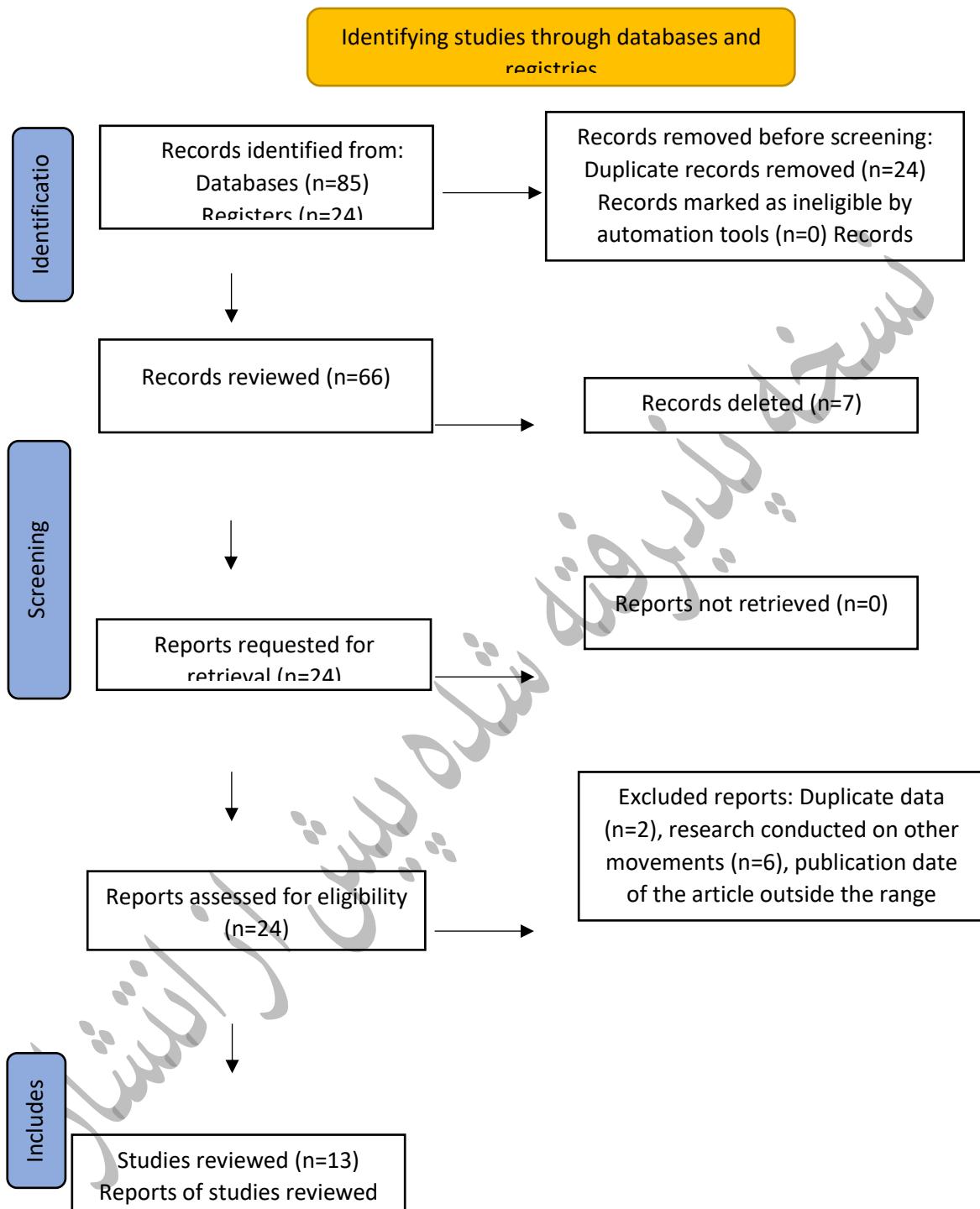
Findings: Based on the review of 14 studies on artificial intelligence and gait (including 7 studies on healthy individuals and 7 on patients), it was found that more than half of the studies (53.8%) used wearable sensors, approximately 23.1% employed markerless systems such as KinaTrax, 23% utilized machine/deep learning methods, and 10% applied conventional motion analysis systems. Cumulative analysis indicated that wearable sensors, particularly when combined with machine learning models such as Stack and SVR, were highly capable of classifying gait episodes (mean sensitivity 0.961 and MAE% below 2.1% for key parameters), reflecting the relatively high accuracy of these approaches. In studies using machine learning, the combination of ResNet101 and Naïve Bayes performed well in classifying body posture (sensitivity 0.87), and LSTM models also yielded notable results for gait path prediction in VR environments, particularly for short-term predictions (14.5 mm error), although long-term predictions required additional data such as eye-tracking. Furthermore, the use of smart insoles combined with the RF algorithm demonstrated the feasibility of extracting digital biomarkers for managing conditions such as sarcopenia, although the number of studies was limited and sample sizes were small.

Conclusion: The present findings indicate that the combination of wearable sensors particularly self-powered triboelectric sensors with machine and deep learning methods (such as SVR, ResNet101, and LSTM) has considerable potential for analyzing biomechanical gait parameters and predicting movement trajectories in laboratory and simulated environments, such as VR. However, the existing evidence is limited to small sample sizes and controlled conditions, and few studies have been conducted on actual patients or in clinical settings. Therefore, any clinical or rehabilitation applications of these technologies still require further research and validation in real-world environments.

Keywords: Artificial intelligence, Biomechanical analysis, Walking.

Introduction

Gait is one of the most fundamental human motor activities that plays a decisive role in neuromuscular health, balance, functional independence, and quality of life. Any change in gait patterns can indicate the occurrence or progression of motor disorders, increased risk of falls, and decreased ability to perform daily activities. Therefore, accurate and quantitative gait analysis is considered as one of the key tools in assessing motor function, diagnosing neuroskeletal disorders, and monitoring the effectiveness of therapeutic and rehabilitation interventions (1-3). Despite its clinical importance, traditional gait analysis methods are mainly limited to laboratory environments and rely on complex optical systems, expensive equipment, and time-consuming analyses that require specialized personnel to perform, limiting their generalizability and widespread use in real-world settings (4).


In recent years, significant advances in the field of artificial intelligence (AI) have had a significant impact on human movement analysis and sports biomechanics. The development of advanced computational methods and the reduction of data processing costs have made computer-based analyses more technically and economically feasible (5). AI is increasingly being used in the fields of sport and movement sciences for performance analysis, movement pattern recognition, decision-making optimization, and prediction of movement behavior, and has revolutionized traditional approaches to evaluation and analysis. This technology has increased the accuracy of movement analysis, scoring, and prediction of athlete performance and even fan behavior, opening new horizons in understanding the complexity of human movement (6). However, many existing studies have taken a largely descriptive approach, focusing more on demonstrating the general capabilities of AI than critically analyzing its role in specific problems such as human gait dynamics (7). Along with the development of artificial intelligence, technological advances in small and lightweight wearable sensors, especially inertial measurement units, have enabled the recording of movement data over long periods of time and in natural conditions of daily life. These sensors have created new opportunities for researchers and clinicians to study gait outside of controlled laboratory environments and in real-world contexts. In contrast to classical gait indices such as speed, stride length, and stride time, accelerometric and gyroscopic data allow the extraction of a wide range of advanced dynamic indices that describe features such as variability, regularity, synchronization, symmetry, smoothness of movement, postural stability, and predictability

of gait (8, 9). In this regard, recent studies have shown that combining data from wearable sensors with artificial intelligence algorithms can be used as a digital biomarker for screening and early diagnosis of neurological diseases. In particular, changes in gait patterns have been proposed as a non-invasive and cost-effective indicator for identifying diseases such as dementia. The development of these digital biomarkers is expected to follow the development of clinical biomarkers; however, challenges such as clinical validation, interpretation of results, and reliability of models remain (7).

On the other hand, machine learning and deep learning algorithms have been recognized as powerful tools for analyzing complex human movement data. Convolutional neural networks (CNN) in processing image and video motion data, and recurrent neural networks (RNN and LSTM) in analyzing time-serial data, have enabled more accurate identification of gait patterns (10). These models are able to extract subtle features such as step incoordination, postural imbalances, and body dynamic deviations from sensory or image data, thus playing an important role in the early diagnosis of neuroskeletal disorders (11). In addition, the integration of multi-source data from wearable sensors and machine vision systems has enabled more comprehensive modeling of gait biomechanics, paving the way for continuous monitoring of gait status and prediction of the risk of falls or muscle injuries. Despite the significant growth of studies on the application of AI in gait analysis, previous reviews have often examined algorithms or data types separately, with little attention paid to systematic and critical comparisons of different approaches, methodological limitations, challenges of clinical implementation, and the reliability of results. Therefore, the main research gap lies in the lack of a comprehensive and critical review that can comprehensively examine the application of AI algorithms in the biomechanical analysis of human gait and analyze the differences, advantages, and shortcomings of approaches based on wearable sensors and machine vision. The innovation of the present study lies in responding to this need; so that this study goes beyond a mere description of the technologies to critically evaluate the accuracy, reliability, and clinical applicability of AI-based methods and outlines future research directions and potential applications in sports medicine, rehabilitation, and movement sciences. Accordingly, the aim of the present study is a comprehensive and critical review of artificial intelligence approaches in the biomechanical analysis of human gait.

Methods and Materials

This study was a systematic review. A search for articles between 2020 and 2025 was conducted in the Web of Science citation databases, the Center for Scientific Information and Academic Jihad, Magiran, Scopus, the Islamic World Science Citation Database, PubMed, and Google Scholar in both Persian and English. The search strategy included keywords related to artificial intelligence, machine learning, deep learning, walking, gait analysis, biomechanics, kinetics, and kinematics, and combined them with AND and OR operators. Inclusion criteria included experimental or applied studies using artificial intelligence in gait analysis, using real-world data from human populations (healthy individuals or neurological, muscular, or musculoskeletal patients), providing performance indicators of models (such as accuracy, sensitivity, specificity) or measurable biomechanical parameters, focusing on human gait with direct data recording or wearable/imaging sensors, and publication in Persian or English. Study designs included cross-sectional, algorithm validation, and clinical prediction/diagnostic studies. Exclusion criteria included theoretical studies or literature reviews without data, editorials, case reports, animal studies or simulations without real human data, use of classical statistical methods without AI, articles with incomplete or duplicate access, conference proceedings, and studies with low methodological quality. As a result, of the total 85 identified articles, 53 articles were excluded due to lack of focus on walking or duplication, 19 articles were excluded due to review or lack of use of AI, and finally 13 articles were selected for the final analysis.

Figure 1- The process of reviewing and selecting articles.

The quality of the articles was assessed using the Dunn and Black questionnaire (23). In case of any discrepancy in the scoring between the authors, the items in question were reviewed individually, and disagreements were resolved through group consultation and discussion to

minimize the possibility of errors in the evaluation process. Based on the results obtained, the average quality score of the articles reviewed in this study, according to the Dunn and Black questionnaire, was 20.67%. It is worth noting that the following relationship was used to calculate the percentage of quality of the articles in the relevant column: $100 * (31 / \text{total score}) = \text{Article quality (in percentage)}$ According to Table 1, the quality of the articles was assessed using the Dunn and Black questionnaire (23). This questionnaire consists of 27 questions, each question being scored between 0 and 1; with the exception of question 5, which is scored 0, 1, and 2 points, such that the number "1" indicates approval and the number "0" indicates rejection or absence of that feature in the article. It should be noted that only in question number 27, a score in the range of 0 to 5 is assigned. A score of 5 or close to it indicates a high statistical power of the article, and on the contrary, lower scores indicate a weaker statistical power of the article in the same field. In order to prevent the inclusion of duplicate studies, all articles identified in the screening stages were carefully reviewed in terms of the names of the authors, year of publication, place of study, population studied, and study period. In cases where similarities were observed between the articles, their full texts were carefully compared to examine the possibility of using common data or population. Finally, it was determined that none of the articles included in the final review were duplicates and each study dealt with independent data or analyses.

Results

Based on the studies conducted on the artificial intelligence approach to walking, 13 articles were obtained according to the keywords and inclusion and exclusion criteria. In the field of using artificial intelligence during walking on healthy adults, 7 studies were obtained, and the number of participants in these studies was 1072 healthy individuals in general (1, 4-6, 9-11). The studies that used artificial intelligence in adults with diseases were 6 studies, including patients with cerebral palsy (24), elderly people without dementia (4), people with Parkinson's disease (2), people with walking problems (3), patients with sarcopenia (25), people with unilateral pain when walking (7), and people with motor disabilities. The statistical sample size of these studies was 3737 people. In these studies, 15.4% of the articles used a markerless motion recording system (1, 2). 53.8% of the articles used wearable sensors (3-9), 23.1% used machine learning (9-11), and 10% used a motion analysis system (25). Studies using a marker-free motion capture system concluded that the KinaTrax marker-free

motion capture system provided reliable spatiotemporal measurements within and between sessions, along with reliable kinematics in the sagittal and frontal planes; validation showed that intraclass correlation coefficients confirmed excellent agreement for all spatial parameters with the marker-based reference system, while temporal variables also showed good agreement, with the exception of oscillation time, where agreement was reported as moderate to almost perfect (1, 2). Also, studies using wearable sensors concluded that the proposed AI models, especially the Stack architecture, demonstrated a high ability to correctly classify gait episodes (mean sensitivity 0.961 and AUC 0.833), despite the challenges posed by the sensor placement on the back of patients with gait disorders. Furthermore, the reduction of the feature space helped improve the performance of most classifiers; also, the SVR models demonstrated excellent accuracy in parameter analysis with very low mean absolute errors (MAE%) (less than 1.2%) for key parameters such as speed and stride length. On the other hand, triboelectric sensors, with an accuracy of more than 95% in recognizing the identity of the person, assessing the motor disability and the movement status, were not only able to harvest the energy they needed from slow movements, but also enabled real-time analysis of the data, which, in general, comprehensively confirms the reliability and efficiency of the sensors for evaluating the walking parameters (3-9). Studies on machine learning during walking also showed that approaches based on machine learning and deep learning showed high efficiency in assessing the movement status and predicting the walking path. In the field of body posture estimation and classification, a combined approach including mobile phone video recording, cloud storage and Fusion Deep Learning achieved strong results; so that the combination of the ResNet101 model and the Naïve Bayes classifier achieved a sensitivity of 0.87 and a specificity of 0.84. Furthermore, in predicting walking path, LSTM models proved their superiority in virtual reality (VR) environments; the LSTM model based on position and orientation data provided the best short-term prediction (50 ms) with an error of 14.5 mm, while the integration of eye-tracking data into long-term predictions (2.5 s) with an error of 73.65 cm showed a significant advantage in this time interval (9-11). A study using a motion capture system also concluded that by combining smart insole data and estimating body posture by an RF machine learning model, studies show that important digital biomarkers can be extracted with high accuracy by analyzing variables such as hip and ankle motion, which has significant potential for the development of more advanced diagnostic and therapeutic interventions, especially for the management of diseases such as sarcopenia (25).

Table 1- Quality assessment of articles based on the Downs and Black questionnaire.

Authors	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	Quality percentage
Schoenwether et al. 2025 (1)	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	1	1	1	1	1	1	0	1	0	0	0	4	77.41
Salami et al. 2025 (24)	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	1	1	1	1	1	0	1	1	0	0	1	4	80.64
Shuichi et al. 2024 (4)	1	1	1	1	1	1	1	0	1	1	0	1	1	0	0	1	1	1	1	1	1	1	1	1	0	1	4	77.41
Ripic et al. 2023 (2)	1	1	1	1	1	1	1	1	1	0	1	1	1	0	0	1	1	1	1	1	1	1	1	1	0	1	5	87.09
Peimankar et al. 2023 (3)	1	1	1	1	0	1	1	1	0	1	1	1	1	0	0	1	1	1	1	1	1	1	1	1	1	1	4	83.87
Kim et al. 2023 (25)	1	1	1	1	0	1	1	0	1	1	1	1	1	0	0	1	1	1	0	1	0	1	1	0	0	5	74.19	
Galasso et al. 2023 (5)	1	1	1	1	0	1	1	0	1	1	1	1	1	0	0	1	1	1	0	1	1	0	1	1	0	1	4	74.19
Lee et al. 2022 (11)	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	1	1	1	1	1	1	1	1	0	0	1	4	83.87
Valerie et al. 2022 (6)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	1	1	1	1	0	1	1	1	1	1	5	90.32
Bacon et al. 2022 (7)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	1	0	1	1	1	1	1	1	0	1	4	83.87
Gou et al. 2021 (8)	1	1	1	1	0	1	1	0	1	1	1	1	1	1	0	0	1	1	1	0	1	1	1	1	0	1	5	80.64
Bremer et al. 2021 (10)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	1	1	1	1	1	1	1	1	0	0	5	87.09

Table 2- Studies based on the use of artificial intelligence during walking.

Author/Year	Purpose	Sample	Protocol	Tools	Result
Schoenwether et al. 2025 (1)	Reliability of AI-based markerless motion capture in gait analysis of healthy adults	9 healthy adults	Gait	kina trax system	The KinaTrax markerless motion capture system provides reliable spatiotemporal measurements within and between sessions along with reliable kinematic measurements in the sagittal and frontal planes.
Salami et al. 2025 (24)	Investigating the relationship between gait kinematics and joint torques by associating kinematic inputs with their corresponding output labels	622 patients with cerebral palsy	Gait	Artificial Intelligence Model - Clinical Labeling System (This system divides the results into three categories based on nRMSE: Green: Acceptable, Yellow: Cautiously Acceptable, Red: Unacceptable)	The hip joint showed the highest population of green labels (84%), while the ankle joint had the lowest (50%). Regression differences in joint kinematic scores and gait profile were observed across all labels. The LDA model achieved an accuracy of 85.2% and an F-score of 92% for predicting green labels in hip joint torque. Furthermore, more severe patient conditions were associated with increased red label predictions.
Shuichi et al. 2024 (4)	Feasibility study of linear acceleration and angular velocity analysis with the help of artificial intelligence (AI) while walking	879 people without dementia	Gait	Sensor	The average sensitivity, specificity, and area under the curve of the models were 0.961, 0.643, and 0.833, respectively, in the 30 experimental data sets.
Ripic et al. 2023 (2)	Assessing the accuracy of spatiotemporal parameters in a marker-free system with an updated marker-free model, coordinate-based gait events and speed on adults with Parkinson's disease	57 patients with Parkinson's disease	Gait	Markerless motion recording system	The interclass correlation coefficients showed excellent agreement between the marker-free system and a marker-based reference system for all spatial parameters. The temporal variables were similar, except for oscillation time, which showed good agreement. The agreement correlation coefficients were similar for all items except oscillation time, which showed moderate to almost perfect agreement.
Peimankar et al. 2023 (3)	Development of a machine learning (ML) algorithm for analyzing accelerometer data and accurately classifying walking activity in patients with walking problems, especially dementia and Alzheimer's.	20 participants with walking problems	Gait	Sensor (accelerometer installed on participants)	Experimental results confirmed that the proposed models (especially Stack) are capable of correctly classifying gait episodes despite the challenging placement of the sensor on the back of patients with gait disorders.

Kim et al. 2023 (25)	Investigation of sarcopenia classification model for musculoskeletal patients using smart insoles and gait analysis with artificial intelligence	83 patients with sarcoidosis	Gait	Smart insole and motion analysis system with artificial intelligence	The convergence of precise sensor technologies (smart soles) with advanced image processing methods (body posture estimation), and their analysis by robust machine learning models such as RF, provides a powerful approach to extract vital digital biomarkers, especially in key areas of the hip and ankle, paving the way for more effective diagnosis and management of physical disorders such as sarcopenia.
Galasso et al. 2023 (5)	Predicting physical activity level from kinematic gait data using machine learning techniques	37 healthy individuals (24 males and 13 females)	Gait	Sensor Treadmill - Wearable Wireless Inertial Measurement Unit Sensors	Reducing the feature space increases performance for most of the classifiers considered. Analysis of the best performing classifiers (KNN, Random Forest, and RSesLib KNN) showed the behavior of accuracy with varying the number of features considered,
Lee et al. 2022 (11)	Identifying the body posture of young people in walking videos using a hybrid artificial intelligence method	35 healthy young adults	Gait	Machine learning algorithms, mobile phone camera, non-invasive tracking devices	The proposed approach, which combines mobile phone camera recording, cloud storage, and fusion deep learning, successfully performed body posture estimation and classification. The maximum specificity and sensitivity obtained using the combination of ResNet101 model and Naïve Bayes classifier were 0.84 and 0.87, respectively.
Valerie et al. 2022 (6)	Development of a multi-class classifier for simultaneous detection of activity (normal walking, stair climbing, stair descending) and gait phase (stance and swing)	80 healthy people	Gait	Sensor: Inertial Measurement Unit (IMU) data collected from thigh and shank	When the six-state model was used as a simple binary classifier (standing/swinging only, regardless of activity type), it achieved an accuracy of 97.1%, which may be sufficient for control in real-world lower limb exoskeletons.
Bacon et al. 2022 (7)	Association of gait metrics with mild unilateral knee pain while walking using machine learning	2066 people with unilateral pain when walking	Gait	Sensor	Sensors are effectively used to assess gait parameters. In particular, the reliability of data collection from locations such as the waist, thigh, and foot has been confirmed.

Gou et al. 2021 (8)	The main goal of this research was to design and validate a self-powered smart cane that, through triboelectric sensors (TENG) connected to leg movement, can simultaneously generate the energy necessary for its operation, and use deep learning algorithms to accurately and in real-time monitor the user's movement status, identity, and level of disability, providing vital information to help improve safety and clinical evaluation.	10 elderly people with mobility disabilities	Gait	Triboelectric sensors	The triboelectric dogs were able to self-supply the necessary energy from their slow steps and simultaneously, with an accuracy of over 95%, recognize the person's identity, assess motor disability, and movement status using deep learning models, demonstrating the system's success in self-powering and real-time data analysis as the user walked.
Bremer et al. 2021 (10)	Predicting future position from natural gait and eye movements with machine learning	18 healthy people	Gait	Machine Learning Model (GRU and LSTM)	The LSTM model using position and orientation data provides the best prediction in the short term (50 ms) with an error of 14.5 mm, while the best long term prediction (2.5 s) with an error of 73.65 cm was achieved by the LSTM model that also included eye tracking data; these findings confirm that LSTM models are suitable for predicting walking paths in VR environments and that eye tracking data has a significant advantage, especially for long term predictions at short distances.
Zhang et al. 2020 (9)	Accurate analysis of walking and running strides using machine learning models	14 healthy people	Gait	Wearable Sensor: Custom-engineered smart shoe soles called Sport Sole that are equipped with sensors. Machine Learning Model: Support Vector Regression (SVR).	The SVR models showed excellent intraclass correlation coefficients (ICC) across all analyzed parameters. The mean absolute errors percent (MAE%) for gait stride length, speed, and foot clearance distance were 1.37, 1.23, and 2.08 percent, respectively. These results demonstrate the high accuracy of this machine learning approach for improving the performance of wearable sensors.

Discussion

The aim of the present study was to review artificial intelligence approaches in human gait biomechanics. The results showed that wearable sensors achieved a sensitivity of 0.961 and an area under the receiver operating characteristic curve of 0.833, and support vector regression models showed an average absolute percentage error of less than 1.2% for parameters such as speed and stride length; triboelectric sensors also provided an accuracy of over 95% in recognizing individuals. In this study, the findings of researchers who used a marker-free gait recording system during gait showed that the marker-free gait recording system can provide spatiotemporal and kinematic measurements in the sagittal and frontal planes, and its correlation coefficients for spatial parameters showed relatively good agreement with the reference system. However, only the oscillation time parameter in measuring temporal variables showed moderate to almost perfect agreement with the reference system, indicating its limitations compared to reference systems (1, 2). The advantages of these studies include the use of patients with gait disorders, but the sample sizes of some studies were limited. Studies on marker less motion recording systems have shown that this markerless motion tracking system provides reliable spatial measurements, but its direct clinical application still requires further validation. Studies using gait sensors have shown that wearable sensors, especially triboelectric sensors, when combined with advanced machine learning methods, can analyze gait parameters, classify activities, and detect the movement status of individuals (3-9). These systems have shown acceptable performance in laboratory conditions, but results may vary in real-world settings and with different patients. The main advantages include the accuracy of parameter estimation with relatively low errors, the self-sufficiency of energy of triboelectric sensors, and the high performance in identifying and detecting movement disabilities. Disadvantages and limitations include fluctuations in feature performance under difficult mounting conditions (such as on the patient's back, which reached 0.643) and dependence on careful optimization of the machine learning model and feature selection, which requires tuning for each specific application scenario. Studies using machine learning have shown that combining video recording with a mobile phone camera, cloud storage, and deep learning fusion allow for body pose estimation and classification, and have achieved relatively successful results. The combination of a deep convolutional neural network model and a naive Bayes classifier has

shown acceptable performance in hand classification; long-term memory models have also been suitable for predicting walking paths in a virtual reality environment. In short-term predictions (50 ms), the error was 14.5 mm, and in longer-term predictions (2.5 s), the error was reduced to 73.65 cm (9-11). The advantages of this approach include the ease of data collection with a mobile phone camera and the use of cloud storage; however, the disadvantages include potential delays in data transfer and heavy processing of deep learning models and the dependence on image quality in different environments. Limitations of the present study include the limited number of existing studies on the use of AI in gait analysis, the lack of examination of athletic and elderly populations, the focus of some studies on small samples or specific groups, and the lack of standardization in methods. Therefore, generalizations of the findings should be made with caution, and direct clinical application of these technologies still requires larger and more comprehensive studies. Future studies should be conducted with larger and more diverse clinical populations and evaluate the performance of AI algorithms in real-world settings. Also, the development of standardized frameworks for data collection and model interpretation could improve the clinical application of these technologies.

Conclusion

The findings of this review show that the use of artificial intelligence and machine learning methods plays an effective role in improving the accuracy, reliability, and interpretability of data obtained from wearable sensors and markerless motion recording systems in human gait analysis. The results indicate that these approaches can largely compensate for the inherent limitations of traditional sensors and methods and enable the extraction of reliable spatiotemporal and kinematic parameters. Despite promising performance in laboratory conditions and some clinical populations, the available evidence suggests that studies with larger sample sizes, standardized designs, and evaluation in real-world settings are necessary for the generalizability of the results and widespread clinical application.

Ethical Considerations

Compliance with ethical guidelines

This article is a systematic review; therefore, this type of study does not require an ethical code.

Funding

This article has not been financially sponsored by any organization or institution.

Authors' Contribution

Conceptualization: (Leila Sabouri, Ebrahim Piri); Methodology: (Leila Sabouri, Ebrahim Piri); Validation: (Ebrahim Piri); Analysis: (Leila Sabouri); Research and review: (Leila Sabouri); Sources for writing the draft: (Leila Sabouri, Ebrahim Piri); Editing and finalizing the text: (All authors); Visualization: (Ebrahim Piri); Supervision: (AmirAli Jafarnejadgro); Project management: (AmirAli Jafarnejadgro); Funding: (No financial sponsor).

Conflict of Interest

There is no conflict of interest between the authors of this article.

Acknowledgments

The authors of this article would like to thank the authors of the studies reported in the article.

نسخه پذیرفته شده پیش از انتشار

عنوان: نقش هوش مصنوعی در بیومکانیک راه-رفتن انسان: یک مطالعه مروی سیستماتیک

نویسنده: لیلا صبوری^۱، ابراهیم پیری^۲، امیرعلی جعفرنژاد گرو^{۲*}

۱. گروه بیومکانیک ورزشی، دانشکده علوم ورزشی، دانشگاه شهید باهنر کرمان، کرمان، ایران.

۲. گروه بیومکانیک ورزشی، دانشکده علوم تربیتی و روانشناسی، دانشگاه محقق اردبیلی، اردبیل، ایران.

نشریه: آرشیو توانبخشی

تاریخ دریافت: 1404/09/12

تاریخ پذیرش: 1404/11/12

تاریخ انتشار اولیه: 1404/11/20

این نسخه «پذیرفته شده پیش از انتشار» مقاله است که پس از طی فرایند داوری، برای چاپ، قابل پذیرش تشخیص داده شده است. این نسخه در مدت کوتاهی پس از اعلام پذیرش به صورت آنلاین و قبل از فرایند ویراستاری منتشر می‌شود. نشریه آرشیو توانبخشی گزینه «پذیرفته شده پیش از انتشار» را به عنوان خدمتی به نویسنده‌گان ارائه می‌دهد تا نتایج آن‌ها در سریع‌ترین زمان ممکن پس از پذیرش برای جامعه علمی در دسترس باشد. پس از آنکه مقاله‌ای فرایند آماده سازی و انتشار نهایی را طی می‌کند، از نسخه «پذیرفته شده پیش از انتشار» خارج و در یک شماره مشخص در وبسایت نشریه منتشر می‌شود. شایان ذکر است صفحه آرایی و ویراستاری فنی باعث ایجاد تغییرات صوری در متن مقاله می‌شود که ممکن است بر محتوای آن تأثیر بگذارد و این امر از حیطه مسئولیت دفتر نشریه خارج است.

لطفا این گونه استناد شود:

Sabouri L, Piri E, Jafarnezhadgero AA. [The Role of Artificial Intelligence in Human Gait Biomechanics: A Systematic Review (Persian)]. Archives of Rehabilitation. Forthcoming 2026

رسانه پلی‌رفته شده پیش از انتشار

هدف: هوش مصنوعی با توانایی تحلیل داده‌های پیچیده و شناسایی الگوهای پنهان، به ویژه در حوزه بیومکانیک راه‌رفتن، تحولی چشمگیر ایجاد کرده است. هدف این مطالعه، مرور و طبقه‌بندی رویکردهای مختلف هوش مصنوعی در تحلیل بیومکانیکی راه‌رفتن بود.

روش بررسی: پژوهش حاضر یک مطالعه مروری سیستماتیک بود. جستجو در پایگاه‌های Web of Science, SID, Scopus, Magiran, PubMed, ISC, Google Scholar و Scopus بین سال‌های ۲۰۲۰ تا ۲۰۲۵ و به دو زبان فارسی و انگلیسی انجام گرفت. معیارهای ورود شامل مطالعات تجربی یا کاربردی با هوش مصنوعی در تحلیل راه‌رفتن انسان، شامل داده‌های افراد سالم یا بیماران عصبی، عضلانی یا اسکلتی-عضلانی؛ ارائه شاخص‌های عملکرد مدل‌ها (دقت، حساسیت، ویژگی) یا پارامترهای بیومکانیکی قابل اندازه‌گیری؛ استفاده از ثبت مستقیم یا حسگرهای پوشیدنی/تصویری؛ طراحی مقطعی، اعتبارسنجی الگوریتم یا پیش‌بینی/تشخیص بالینی بود. معیارهای خروج شامل مطالعات نظری، مرور ادبیات بدون داده، سرمقاله، گزارش موردنی، پژوهش حیوانی یا شبیه‌سازی بدون داده انسانی، استفاده صرف از روش‌های آماری کلاسیک بدون هوش مصنوعی، مقالات با داده ناقص یا دسترسی محدود، مطالعات روی فعالیت‌های غیر از راه‌رفتن و کیفیت روش‌شناسی پایین بود. از ۸۵ مقاله شناسایی شده، ۱۳ مطالعه واحد شرایط انتخاب شدند. کیفیت مطالعات با پرسش‌نامه Downs & Black ارزیابی شد.

یافته‌ها: با بررسی ۱۳ مطالعه در زمینه هوش مصنوعی و راه‌رفتن (شامل ۷ مطالعه بر روی افراد سالم و ۷ مطالعه بر روی بیماران)، مشخص شد که بیش از نیمی از مطالعات (۸/۵۳ درصد) از حسگرهای پوشیدنی، حدود ۱/۲۳ درصد از سیستم‌های بدون نشانگر مانند KinaTrax، ۲۳ درصد از روش‌های یادگیری ماشین/عمیق و ۱۰ درصد از سیستم‌های تحلیل حرکت مرسوم استفاده کرده‌اند. تحلیل تجمعی نشان داد که حسگرهای پوشیدنی، به ویژه در ترکیب با مدل‌های یادگیری ماشین مانند SVR و Stack، توانایی بالای در طبقه‌بندی اپیزودهای راه‌رفتن دارند (میانگین حساسیت ۹۶۱/۰ و MAE% ۱/۲ درصد برای پارامترهای کلیدی)، که نشان‌دهنده دقت نسبتاً بالای این رویکردها است. در مطالعات استفاده‌کننده از یادگیری ماشین، ترکیب ResNet101 و Naïve Bayes عملکرد خوبی در طبقه‌بندی وضعیت بدن (حساسیت ۸۷/۰) نشان داد و مدل‌های LSTM نیز در پیش‌بینی مسیر در محیط VR به ویژه در کوتاه‌مدت، نتایج قابل توجهی ارائه کردند (خطای ۵/۱۴ میلی‌متر)، هرچند دقت در پیش‌بینی‌های بلندمدت نیازمند داده‌های اضافی مانند ردیابی چشم بود. همچنین، استفاده از کفی هوشمند همراه با الگوریتم RF نشان داد که استخراج بیومارکرهای دیجیتال برای مدیریت بیماری‌های نظری سارکوبنی امکان‌پذیر است، اگرچه تعداد مطالعات محدود و حجم نمونه کوچک بود.

نتیجه‌گیری: تحقیقات حاضر نشان می‌دهند که ترکیب حسگرهای پوشیدنی، به ویژه نوع تریبوالکتریک خودتأمین افزایی، با روش‌های یادگیری ماشین و یادگیری عمیق (مانند SVR و ResNet101) توانایی قابل توجهی در تحلیل پارامترهای بیومکانیکی راه‌رفتن و پیش‌بینی مسیر حرکت در محیط‌های آرماشگاهی و شبیه‌سازی شده مانند VR دارد. با این حال، شواهد موجود محدود به نمونه‌های کوچک و شرایط کنترل شده است و مطالعات کمی بر روی بیماران واقعی یا در محیط‌های بالینی انجام شده است. بنابراین، هرگونه کاربرد بالینی یا توانبخشی مبتنی بر این فناوری‌ها هنوز نیازمند تحقیقات بیشتر و اعتبارسنجی در محیط‌های واقعی است.

کلیدواژه‌ها: هوش مصنوعی، تحلیل بیومکانیکی، راه‌رفتن.

راه رفتن یکی از بنیادی ترین فعالیت‌های حرکتی انسان است که نقش تعیین‌کننده‌ای در سلامت عصبی-عضلانی، تعادل، استقلال عملکردی و کیفیت زندگی ایفا می‌کند. هرگونه تغییر در الگوهای راه رفتن می‌تواند نشان‌دهنده بروز یا پیشرفت اختلالات حرکتی، افزایش خطر سقوط و کاهش توانایی انجام فعالیت‌های روزمره باشد. از این‌رو، تحلیل دقیق و کمی راه رفتن به عنوان یکی از ابزارهای کلیدی در ارزیابی عملکرد حرکتی، تشخیص اختلالات عصبی-اسکلتی و پایش اثربخشی مداخلات درمانی و توانبخشی مطرح است (۱-۳). با وجود اهمیت بالینی این موضوع، روش‌های سنتی آنالیز راه رفتن عمدتاً به محیط‌های آزمایشگاهی محدود بوده و متکی بر سیستم‌های اپتیکی پیچیده، تجهیزات پرهزینه و تحلیل‌های زمان‌بر هستند که اجرای آن‌ها نیازمند نیروی متخصص بوده و قابلیت تعمیم و استفاده گسترده در محیط‌های واقعی را با محدودیت مواجه می‌سازد (۴).

ذر سال‌های اخیر، پیشرفت‌های چشمگیر در حوزه هوش مصنوعی (Artificial Intelligence) تأثیر قابل توجهی بر تحلیل حرکت انسان و بیومکانیک ورزشی داشته است. توسعه روش‌های محاسباتی پیشرفتی و کاهش هزینه‌های پردازش داده موجب شده است که تحلیل‌های مبتنی بر رایانه از نظر فنی و اقتصادی مقرن به صرفه‌تر شوند (۵). هوش مصنوعی به‌طور فزاینده‌ای در حوزه ورزش و علوم حرکتی برای تحلیل عملکرد، شناسایی الگوهای حرکتی، بهینه‌سازی تصمیم‌گیری و پیش‌بینی رفتار حرکتی به کار گرفته می‌شود و موجب تحول در رویکردهای سنتی ارزیابی و تحلیل شده است. این فناوری دقت تحلیل حرکات، امتیازدهی، پیش‌بینی عملکرد ورزشکاران و حتی رفتار هوداران را افزایش داده و افق‌های جدیدی در درک پیچیدگی حرکت انسان گشوده است (۶). با این حال، بسیاری از مطالعات موجود رویکردی عمدتاً توصیفی داشته و تمرکز آن‌ها بیشتر بر نمایش قابلیت‌های کلی هوش مصنوعی بوده است تا تحلیل انتقادی نقش آن در مسائل خاصی مانند دینامیک راه رفتن انسان (۷).

هم‌زمان با توسعه هوش مصنوعی، پیشرفت‌های فناورانه در زمینه حسگرهای پوشیدنی کوچک و سبک، به‌ویژه واحدهای اندازه‌گیری اینرسی امکان ثبت داده‌های حرکتی در بازه‌های زمانی طولانی و در شرایط طبیعی زندگی روزمره را فراهم کرده است. این حسگرهای فرسته‌های جدیدی را برای پژوهشگران و متخصصان بالینی ایجاد کرده‌اند تا راه رفتن را خارج از محیط‌های کنترل شده آزمایشگاهی و در زمینه‌های واقعی مورد بررسی قرار دهند. برخلاف شاخص‌های کلاسیک راه رفتن مانند سرعت، طول گام و زمان گام، داده‌های شتاب‌سنجی و ژیروسکوپی امکان استخراج مجموعه‌ای گسترده از شاخص‌های پیشرفتی دینامیکی را فراهم می‌کنند که ویژگی‌هایی مانند تغییرپذیری، نظم، همگام‌سازی، تقارن، نرمی حرکت، پایداری موضعی و پیش‌بینی‌پذیری راه رفتن را توصیف می‌کنند (۸، ۹). در همین راستا، مطالعات اخیر نشان داده‌اند که ترکیب داده‌های حاصل از حسگرهای پوشیدنی با الگوریتم‌های هوش مصنوعی می‌تواند به عنوان یک نشانگر زیستی دیجیتال برای غربالگری و تشخیص زودهنگام بیماری‌های عصبی مورد استفاده قرار گیرد. به‌ویژه، تغییرات در الگوهای راه رفتن به عنوان شاخصی غیرت‌های جمی و مقرن به صرفه برای شناسایی بیماری‌هایی نظیر زوال عقل مطرح شده‌اند. انتظار می‌رود توسعه این نشانگرهای زیستی دیجیتال همگام با توسعه نشانگرهای زیستی بالینی انجام شود؛ با این حال، چالش‌هایی همچون اعتبار‌سنجی بالینی، تفسیر نتایج و قابلیت اعتماد مدل‌ها همچنان به قوت خود باقی است (۷).

از سوی دیگر، الگوریتم‌های یادگیری مانشین و یادگیری عمیق به عنوان ابزارهایی توانمند برای تحلیل داده‌های پیچیده حرکتی انسان شناخته شده‌اند. شبکه‌های عصبی کانولوشنی (CNN) در پردازش داده‌های تصویری و ویدئویی حرکت، و شبکه‌های عصبی بازگشتی (RNN) و (LSTM) در تحلیل داده‌های زمانی-سربیالی، امکان شناسایی دقیق‌تر الگوهای راه رفتن را فراهم کرده‌اند (۱۰). این مدل‌ها قادرند ویژگی‌های ظرفی نظیر ناهمانگی گام‌ها، اختلالات تعادل وضعیتی و انحرافات دینامیکی بدن را از داده‌های حسگری یا تصویری استخراج کنند و بدین ترتیب، نقش مهمی در تشخیص زودهنگام اختلالات عصبی و اسکلتی ایفا نمایند (۱۱). افزون بر این، تلفیق داده‌های چندمتبعی حاصل از حسگرهای پوشیدنی و سامانه‌های بینایی مانشین، امکان مدل‌سازی جامع‌تری از بیومکانیک راه رفتن را فراهم کرده و مسیر را برای پایش مداوم وضعیت حرکتی و پیش‌بینی خطر سقوط یا آسیب‌های عضلانی هموار ساخته است. با وجود رشد قابل توجه مطالعات در زمینه کاربرد هوش مصنوعی در تحلیل راه رفتن، مروههای پیشین غالباً به بررسی مجزای الگوریتم‌ها یا انواع داده‌ها پرداخته و کمتر به مقایسه نظاممند و انتقادی

رویکردهای مختلف، محدودیت‌های روش‌شناختی، چالش‌های پیاده‌سازی بالینی و میزان قابلیت اعتماد نتایج توجه کرده‌اند. از این رو، شکاف پژوهشی اصلی در فقدان یک مرور جامع و انتقادی است که بتواند به صورت یکپارچه، کاربرد الگوریتم‌های هوش مصنوعی در تحلیل بیومکانیکی راه‌رفتن انسان را بررسی کرده و تفاوت‌ها، مزایا و کاستی‌های رویکردهای مبتنی بر حسگرهای پوشیدنی و بینایی ماشین را تحلیل کند. نوآوری پژوهش حاضر در پاسخ به این نیاز نهفته است؛ به طوری که این مطالعه فراتر از توصیف صرف فناوری‌ها، به ارزیابی انتقادی دقت، قابلیت اعتماد و کاربردپذیری بالینی روش‌های مبتنی بر هوش مصنوعی می‌پردازد و مسیرهای آینده پژوهش و کاربردهای بالقوه در پزشکی ورزشی، توانبخشی و علوم حرکتی را ترسیم می‌کند. بر این اساس، هدف تحقیق حاضر مروری جامع و انتقادی بر رویکردهای هوش مصنوعی در تحلیل بیومکانیکی راه‌رفتن انسان است.

روش‌شناختی

این مطالعه از نوع مروری سیستماتیک بود. جستجوی مقالات بین سال‌های ۲۰۲۰ تا ۲۰۲۵ در پایگاه‌های داده استنادی Web of Science، پایگاه مرکز اطلاعات علمی و جهاد دانشگاهی، Scopus، MagIran، پایگاه استنادی علوم جهان اسلام، PubMed و Google Scholar به دو زبان فارسی و انگلیسی انجام شد. استراتژی جستجو شامل کلیدواژه‌های مرتبط با هوش مصنوعی، یادگیری ماشین، یادگیری عمیق، راه‌رفتن، تحلیل راه‌رفتن، بیومکانیک، کینتیک و کینماتیک و ترکیب آن‌ها با عملگرهای AND و OR بود. معیارهای ورود شامل مطالعات تجربی یا کاربردی با استفاده از هوش مصنوعی در تحلیل راه‌رفتن، استفاده از داده‌های واقعی جمعیت انسانی (افراد سالم یا بیماران عصی، عضلاتی یا اسکلتی-عضلاتی)، ارائه شاخص‌های عملکردی مدل‌ها (مانند دقت، حساسیت، ویژگی) یا پارامترهای بیومکانیکی قابل اندازه‌گیری، تمرکز بر راه‌رفتن انسان با ثبت داده‌های مستقیم یا حسگرهای پوشیدنی/تصویری و انتشار به زبان فارسی یا انگلیسی بود. طراحی مطالعات شامل مقطعی، اعتبارستجو الگوریتم و مطالعات پیش‌بینی/تشخیص بالینی بود. معیارهای خروج شامل مطالعات نظری یا مرور ادبیات بدون داده، سرمهاله‌ها، گزارش موردي، پژوهش‌های حیوانی یا شبیه‌سازی بدون داده واقعی انسان، استفاده صرف از روش‌های آماری کلاسیک بدون هوش مصنوعی، مقالات با دسترسی ناقص یا تکراری، گزارش‌های کنفرانسی و مطالعات با کیفیت روش‌شناختی پایین بود. در نتیجه، از مجموع ۸۵ مقاله شناسایی شده، ۵۳ مقاله به دلیل عدم تمرکز بر راه‌رفتن یا تکراری بودن حذف شدند، ۱۹ مقاله به دلیل مرور بودن یا عدم استفاده از هوش مصنوعی از مطالعه خارج شدند و در نهایت ۱۳ مقاله برای تجزیه و تحلیل نهایی انتخاب شدند.

تصویر ۱- فرآیند بررسی و انتخاب مقالات

ارزیابی کیفیت مقالات با استفاده از پرسشنامه دان و بلک انجام شد (۲۳). در صورت بروز هرگونه اختلاف در نمره‌دهی میان نویسنده‌گان، موارد موردنظر به صورت جداگانه بررسی، و اختلاف‌نظرها از طریق مشورت و بحث گروهی برطرف گردید تا احتمال بروز خطا در فرآیند ارزیابی به حداقل برسد. بر اساس نتایج به دست آمده، میانگین امتیاز کیفیت مقالات بررسی شده در این مطالعه، طبق پرسشنامه دان و بلک، برابر با $20/67$ درصد بود. شایان ذکر است که برای محاسبه درصد کیفیت مقالات در ستون مرتبه، از رابطه زیر استفاده شد:

۱۰۰*(۳۱ / نمره کا)=کیفیت مقالات (پر حسب درصد)

بر اساس جدول شماره ۱، ارزیابی کیفیت مقالات با استفاده از پرسشنامه دان و بلک انجام شد (۲۳). این پرسشنامه شامل ۲۷ سؤال است که برای هر سؤال، نمره‌ای بین ۰ و ۱ در نظر گرفته می‌شود؛ به استثنای سوال ۵ که ۰، ۱ و ۲ امتیازی می‌باشد به‌گونه‌ای که عدد «۱» نشان‌دهنده تأیید و عدد «۰» بیان‌گر رد یا نبود آن ویژگی در مقاله است. لازم به ذکر است که تنها در سؤال شماره ۲۷، امتیازی در بازه‌ی ۰ تا ۵ اختصاص می‌یابد. کسب امتیاز ۵ یا نزدیک به آن، بیان‌گر قدرت آماری بالای مقاله یوده و در مقایل، امتیاز‌های بیان‌تر نشان‌دهنده قدرت آماری ضعیفتر مقاله در همین زمینه است.

به منظور جلوگیری از ورود مطالعات تکراری، تمامی مقالات شناسایی شده در مراحل غربالگری از نظر نام نویسنده‌گان، سال انتشار، محل انجام مطالعه، جمعیت مورد بررسی و بازه زمانی مطالعه به دقت بررسی شدند. در مواردی که شباهت‌هایی میان مقالات مشاهده شد، متن کامل آن‌ها به طور دقیق مقایسه گردید تا احتمال استفاده از داده‌ها یا جمعیت مشترک بررسی شود. در نهایت، مشخص شد که هیچ‌یک از مقالات واردشده در مرور نهایی تکراری نبوده و هر مطالعه به داده‌ها یا تحلیل‌های مستقل پرداخته است

یافته‌ها

براساس مطالعات صورت گرفته در زمینه رویکرد هوش مصنوعی در راه‌رفتن تعداد ۱۳ مقاله با توجه به کلیدواژه‌ها و معیارهای ورود و خروج به دست آمد. در زمینه استفاده از هوش مصنوعی طی راه‌رفتن بر بزرگسالان سالم تعداد ۷ مطالعه به دست آمد و تعداد نمونه‌های شرکت کننده در این مطالعات به طور کلی ۱۰۷۲ نفر فرد سالم بودند (۱۱-۹، ۴-۱). مطالعاتی که از هوش مصنوعی در بزرگسالان دارای بیماری استفاده کرده بودند ۶ مطالعه بود که شامل بیماران مبتلا به فلج مغزی (۲۴)، سالم‌دان بدون زوال عقل (۴)، افراد مبتلا به بیماری پارکینسون (۲)، افراد دچار مشکلات راه‌رفتن (۳)، بیماران مبتلا به سارکوپنی (۲۵)، افراد دچار درد یک طرفه هنگام راه‌رفتن (۷) و افراد دارای ناتوانی حرکتی بودند. تعداد نمونه آماری این مطالعات ۳۷۳۷ نفر بودند. در این مطالعات $۱۵/۴$ درصد مقالات از سیستم ثبت حرکت بدون مارکر استفاده کرده بودند (۱، ۱/۵۳). درصد مقالات از حسگرهای پوشیدنی (۹-۳) استفاده کرده بودند و ۱/۲۳ از یادگیری ماشین (۹-۱۱) و ۱۰ درصد مقالات از سیستم آنالیز حرکت (۲۵) استفاده کرده بودند. مطالعاتی که از سیستم ثبت حرکت بدون مارکر استفاده کرده بودند نتیجه گرفتند که سیستم ثبت حرکت بدون نشانگر KinaTrax اندازه‌گیری‌های مکانی-زمانی قابل اعتمادی را در داخل و بین جلسات، همراه با سینماتیک قابل اعتماد در صفحات ساجیتال و فرونتال ارائه می‌دهد؛ اعتبار سنجی نشان داد که ضرایب همبستگی درون کلاسی، توافق عالی را برای همه پارامترهای مکانی با سیستم مرجع مبتنی بر نشانگر تأیید می‌کنند، در حالی که متغیرهای زمانی نیز تطابق خوبی دارند، به استثنای زمان نوسان که تطابق آن متوسط تا تقریباً کامل گزارش شده است (۱، ۲). همچنین، مطالعاتی که از حسگرهای پوشیدنی استفاده کرده بودند، نتیجه گرفتند که مدل‌های پیشنهادی هوش مصنوعی، به ویژه معماری Stack، علی‌رغم چالش‌های ناشی از محل قرارگیری حسگر بر روی پشت بیماران مبتلا به اختلالات راه‌رفتن، توانایی بالایی در طبقه‌بندی صحیح اپیزودهای راه‌رفتن از خود نشان دادند (میانگین حساسیت $۹/۶۱$ و AUC $۰/۸۳۳$ برابر با $۰/۰۰$). علاوه بر این، کاهش فضای ویژگی به بهبود عملکرد اکثر طبقه‌بندی‌کننده‌ها کمک کرد؛ همچنین، مدل‌های SVR دقت عالی در تحلیل پارامترها را با میانگین خطاهای مطلق درصدی (MAE%) بسیار پایین (کمتر از $۲/۱$ ٪) برای پارامترهای کلیدی مانند سرعت و طول گام به نمایش گذاشتند. از سوی دیگر، حسگرهای تریبوالکتریک با دستیابی به دقت بیش از ۹۵٪ در تشخیص هویت فرد، ارزیابی ناتوانی حرکتی و وضعیت حرکت، نه تنها توانستند انرژی مورد نیاز خود را از حرکات آهسته برداشت کنند، بلکه امکان تحلیل بلاذرنگ (Real-Time) داده‌ها را نیز فراهم ساختند که در مجموع، قابلیت اطمینان و کارایی حسگرها برای ارزیابی پارامترهای راه‌رفتن را به‌طور جامع تأیید می‌کند (۹-۳). مطالعات انجام شده روی یادگیری ماشین طی راه‌رفتن نیز نشان دادند رویکردهای مبتنی بر یادگیری ماشین و یادگیری عمیق، کارایی بالایی در ارزیابی وضعیت حرکتی و پیش‌بینی مسیر راه‌رفتن نشان دادند. در زمینه تخمین و طبقه‌بندی وضعیت بدن، یک رویکرد ترکیبی شامل ضبط ویدئویی با تلفن همراه، ذخیره‌سازی ابری و یادگیری عمیق ادغامی (Fusion Deep Learning) موفق به کسب نتایج قوی شد؛ به طوری که ترکیب مدل ResNet101 و طبقه‌بندی‌کننده Naïve Bayes به حساسیت $۰/۸۷$ و ویژگی‌زایی $۰/۸۴$ دست یافت. علاوه بر این، در پیش‌بینی مسیر راه‌رفتن، مدل‌های LSTM برتری خود را در محیط‌های واقعیت مجازی (VR) ثابت کردند؛ مدل LSTM مبتنی بر داده‌های موقعیت و جهت‌گیری، بهترین پیش‌بینی کوتاه‌مدت (۰-۵۰ میلی‌ثانیه) را با خطای $۱/۱۴$ میلی‌متر ارائه داد، در حالی که ادغام داده‌های ردیابی چشم در پیش‌بینی‌های بلندمدت (۵-۲/۵ ثانیه) با خطای $۷/۳$ متر، مزیت قابل توجهی را در این بازه زمانی نشان

داد (۹-۱۱). مطالعه‌ای نیز که از سیستم ثبت حرکت استفاده کرده بودند نتیجه گرفتند که با تکیه بر ترکیب داده‌های کفی هوشمند و تخمین وضعیت بدن توسط مدل یادگیری ماشین RF، مطالعات نشان می‌دهند که می‌توان با دقیق بالا، بیومارکرهای دیجیتالی مهمی را از طریق تحلیل متغیرهایی مانند حرکت لگن و مج پا استخراج کرد، که این امر پتانسیل چشمگیری برای توسعه مداخلات تشخیصی و درمانی پیشرفته‌تر، بهویژه برای مدیریت بیماری‌هایی چون سارکوپنی، دارد (۲۵).

نحوه پلیرونه شده پیش از انتشار

جدول ۱- کیفیت‌سنجی مقالات براساس پرسش‌نامه دان و بلک.

نویسنده‌گان	۱	۲	۳	۴	۵	۶	۷	۸	۹	۱۰	۱۱	۱۲	۱۳	۱۴	۱۵	۱۶	۱۷	۱۸	۱۹	۲۰	۲۱	۲۲	۲۳	۲۴	۲۵	۲۶	۲۷	درصد کیفیت
Schoenwether و همکاران (۱) ۲۰۲۵	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱
Salami و همکاران (۲۴) ۲۰۲۵	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱
Shuichi و همکاران (۴) ۲۰۲۴	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱
Ripic و همکاران (۲) ۲۰۲۳	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱
Peimankar و همکاران (۳) ۲۰۲۳	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱
kim و همکاران (۲۵) ۲۰۲۳	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱
Galasso و همکاران (۵) ۲۰۲۳	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱	۱

جدول ۲- مطالعات مبتنی بر استفاده از هوش مصنوعی طی راه رفتن.

نويسنده/سال	هدف	نمونه	پروتوكل	ابزار	نتیجه
Schoenwether و همکاران ۲۰۲۵ (۱)	قابلیت اطمینان ثبت حرکت بدون نشانگر مبتنی بر هوش مصنوعی در تحلیل‌های راه رفتن بزرگسالان سالم	۹ سالم	راه رفتن	kina trax	سيستم ثبت حرکت بدون نشانگر KinaTrax. اندازه‌گیری‌های مکانی-زمانی قابل اعتمادی را در داخل و بین جلسات همراه با اندازه‌گیری‌های سینماتیکی قابل اعتماد در صفحه ساجیتال و فرونتال ارائه می‌دهد.
Salami و همکاران ۲۰۲۵ (۲۴)	بررسی رابطه بین سینماتیک راه رفتن و گشتوارهای مفصلی را با مرتبط کردن ورودی‌های سینماتیک با برچسب‌های خروجی مربوطه آن‌ها	۶۲۲ بیمار مبتلا به فلج مغزی	راه رفتن	مدل هوش مصنوعی- سیستم برچسب گذاری بالینی (این سیستم نتایج را بر اساس nRMSE به سه دسته تقسیم می‌کند: سبز قابل قبول (Green)، قرمز (Red) و غیرقابل قبول (Yellow))	مفصل ران بیشترین جمعیت برچسب‌های سبز (۸۴٪) را نشان داد، در حالی که مفصل مچ پا کمترین (۵۰٪) را داشت. تفاوت‌های رگرسیونی در نمرات سینماتیک مفصل و پروفایل راه رفتن در تمام برچسب‌ها مشاهده شد. مدل LDA به دقت ۸۵.۲٪ و امتیاز F ۹۲٪ برای پیش‌بینی برچسب سبز در گشتوار مفصل ران دست یافت. علاوه بر این، شرایط شدیدتر بیمار با افزایش پیش‌بینی‌های برچسب قرمز همراه بود

<p>میانگین حساسیت، ویژگی و مساحت زیر منحنی مدل‌ها به ترتیب در ۳۰ مجموعه داده آزمایشی ۰/۹۶۱، ۰/۹۶۱ و ۰/۸۳۳ بود.</p>	<p>حسگر</p>	<p>راه‌رفتن</p>	<p>۸۷۹ نفر بدون زوال عقل</p>	<p>بررسی امکان‌سنجی تحلیل شتاب خطی و سرعت زاویه‌ای با کمک هوش مصنوعی (AI) در حین راه‌رفتن</p>	<p>Shuichi همکاران (۴) ۲۰۲۴</p>
<p>ضرایب همبستگی بین کلاسی، توافق عالی بین سیستم بدون نشانگر و یک سیستم مرجع مبتنی بر نشانگر را برای همه پارامترهای مکانی نشان داد. متغیرهای زمانی مشابه بودند، به جز زمان نوسان که توافق خوبی را نشان داد. ضرایب همبستگی تطابق با همه موارد به جز زمان نوسان مشابه بودند که تطابق متوسط تا تقریباً کاملی را نشان می‌دادند.</p>	<p>سیستم ثبت حرکت بدون نشانگر</p>	<p>راه‌رفتن</p>	<p>۵۷ بیمار مبتلا به بیماری پارکینسون</p>	<p>ارزیابی دقیق پارامترهای مکانی-زمانی در سیستم بدون نشانگر با یک مدل بدون نشانگر به روز شده، رویدادهای راه رفتن مبتنی بر مختصات و سرعت بر بزرگسالان مبتلا به بیماری پارکینسون</p>	<p>Ripic و همکاران (۲) ۲۰۲۳</p>
<p>تایج تجربی تأیید کردند که مدل‌های پیشنهادی (به ویژه Stack) با وجود قرارگیری چالش برانگیز حسگر روی پشت بیماران مبتلا به اختلالات راه رفتن، توانایی طبقه‌بندی صحیح اپیزودهای راه رفتن را دارند</p>	<p>حسگر (شتاب سنج که روی شرکت کیت‌دگان نصب شد)</p>	<p>راه‌رفتن</p>	<p>۲۰ کننده دارای مشکلات راه- رفتن</p>	<p>وسعه یک الگوریتم یادگیری ماشین (ML) برای تحلیل داده‌های شتاب‌سنج و طبقه‌بندی دقیق فعالیت راه رفتن در بیماران مبتلا به مشکلات راه- رفتن به ویژه دمانس و آرایمر.</p>	<p>Peimankar و همکاران (۳) ۲۰۲۳</p>
<p>همگرایی فناوری‌های حسگر دقیق (کفی هوشمند) با روش‌های پردازش تصویر پیشرفته (تخمین وضعیت بدن)، و تحلیل آن‌ها توسط مدل‌های یادگیری ماشین قوی مانند RF، یک رویکرد قدرتمند برای استخراج بیومارکرهای</p>	<p>کفی هوشمند و سیستم آنالیز حرکت با هوش مصنوعی</p>	<p>راه‌رفتن</p>	<p>۸۳ بیمار مبتلا به سارکوپنی</p>	<p>بررسی مدل طبقه‌بندی سارکوپنی برای بیماران اسکلتی-عضلانی با استفاده از کفی هوشمند و آنالیز راه رفتن با هوش مصنوعی</p>	<p>kim و همکاران (۲۵) ۲۰۲۳</p>

<p>دیجیتال حیاتی، به خصوص در نواحی کلیدی لگن و مج پا، فراهم می‌آورد که راه را برای تشخیص و مدیریت مؤثرتر اختلالات فیزیکی مانند سارکوبنی هموار می‌سازد.</p>					
<p>کاهش فضای ویژگی، عملکرد را برای اکثر طبقه‌بندی‌کننده‌های مورد بررسی افزایش می‌دهد. تجزیه و تحلیل طبقه‌بندی‌کننده‌های با بهترین عملکرد RSesLib (KNN)، جنگل تصادفی و KNN (KNN) رفتار دقت را با تغییر تعداد ویژگی‌های مورد بررسی نشان داد.</p>	<p>تردمیل حسگر دار- حسگرهای واحد اندازه‌گیری اینرسی بی‌سیم پوشیدنی</p>	<p>راه‌رفتن</p>	<p>۳۷ فرد سالم ۲۴ مرد و ۱۳ زن)</p>	<p>پیش‌بینی سطح فعالیت بدنی از داده‌های راه رفتن سینماتیکی با استفاده از تکنیک‌های یادگیری ماشین</p>	<p>Galasso و همکاران (۲۰۲۳) (۵)</p>
<p>رویکرد پیشنهادی که ترکیبی از ضبط با دوربین تلفن همراه، فضای ذخیره‌سازی ابری (Cloud Storage) و یادگیری عمیق ادگامی (Deep Learning) است، با موفقیت تخمین و طبقه‌بندی وضعیت بدن را انجام داد. حداکثر ویژگی‌زایی (Specificity) و حساسیت (Sensitivity) به دست آمده با استفاده از ترکیب مدل ResNet101 و Naïve Bayes و طبقه‌بندی‌کننده ترتیب ۰/۸۷ و ۰/۸۴ بود.</p>	<p>الگوریتم‌های یادگیری ماشین، دوربین تلفن همراه، دستگاه‌های ردیابی غیر تهاجمی</p>	<p>راه‌رفتن</p>	<p>۳۵ بزرگسال جوان سالم</p>	<p>شناسایی وضعیت بدن جوانان در ویدیوهای راه رفتن با استفاده از یک روش هوش مصنوعی ترکیبی</p>	<p>Lee و همکاران (۲۰۲۲) (۱۱)</p>

<p>Henegami که مدل شش حالتی به عنوان یک طبقه‌بندی کننده دودویی ساده (فقط ایستادن نوسان، بدون در نظر گرفتن نوع فعالیت) استفاده شد، دقیق معادل ۹۷.۱٪ کسب کرد که برای کنترل در اکرواسکلتون‌های اندام تحتانی در دنیای واقعی ممکن است کافی باشد.</p>	<p>حسگر: داده‌های واحد اندازه‌گیری اینرسی (IMU) که از ران (thigh) و ساق پا (shank) جمع‌آوری شده است</p>	<p>راه‌رفتن</p>	<p>۸۰ فرد سالمند</p>	<p>توسعه یک طبقه‌بندی کننده چندکلاسه برای تشخیص همزنمان فعالیت (راه‌رفتن عادی، بالا رفتن از پله، پایین آمدن از پله) و فاز راه رفتن (ایستادن Stance و نوسان Swing) /</p>	<p>و Valerie همکاران (۶) ۲۰۲۲</p>
<p>حسگرها به طور مؤثر برای ارزیابی پارامترهای راه‌رفتن استفاده می‌شوند. به طور خاص، قابلیت اطمینان جمع‌آوری داده‌ها از مکان‌های مانند کمر، ران و پا مورد تأیید قرار گرفته است</p>	<p>حسگر</p>	<p>راه‌رفتن</p>	<p>۲۰۶۶ فرد با درد یک طرفه هنگام راه‌رفتن</p>	<p>ارتباط معیارهای راه رفتن با درد خفیف یک طرفه زانو هنگام راه‌رفتن با استفاده از یادگیری ماشین</p>	<p>و Bacon همکاران (۷) ۲۰۲۲</p>
<p>سگرهای تربیوکتریک توانستند به طور خودتأمین انرژی لازم را از گام‌های آهسته‌ی آن‌ها برداشت کرده و همزن، با دقت بالای ۹۵٪، هویت فرد، ارزیابی ناتوانی حرکتی و وضعیت حرکت را با استفاده از مدل‌های یادگیری عمیق تشخیص دهنده، که نشان‌دهنده‌ی موفقیت سیستم در تأمین برق خود و تحلیل بلادرنگ داده‌ها هنگام راه‌رفتن کاربر بود.</p>	<p>حسگرهای تربیوکتریک</p>	<p>راه‌رفتن</p>	<p>۱۰ نفر سالمندان دچار ناتوانی حرکتی</p>	<p>هدف اصلی این پژوهش طراحی و اعتبارسنجی یک عصای هوشمند خودتأمین انرژی بوده است که از طریق حسگرهای تربیوکتریک (TENG) متصل به حرکت پا، بتواند همزن با ایجاد انرژی لازم برای عملکرد خود، با استفاده از الگوریتم‌های یادگیری عمیق، وضعیت حرکتی، هویت کاربر و سطح ناتوانی او را به طور دقیق و بلادرنگ (Real-time) پایش کرده و اطلاعات حیاتی را برای کمک به بهبود ایمنی و ارزیابی بالینی فراهم سازد.</p>	<p>و Gou همکاران (۸) ۲۰۲۱</p>
<p>مدل LSTM با استفاده از داده‌های موقعیت و جهت‌گیری بهترین پیش‌بینی را در کوتاه‌مدت (۵۰ میلی‌ثانیه) با خطای ۵/۱۴ میلی‌متر ارائه می‌دهد، در حالی که بهترین پیش‌بینی بلندمدت (۲.۵ ثانیه) با خطای ۶۵/۷۳ سانتی‌متر توسط مدل</p>	<p>مدل یادگیری ماشین (LSTM و GRU)</p>	<p>راه‌رفتن</p>	<p>۱۸ فرد سالمند</p>	<p>پیش‌بینی موقعیت آینده از روی راه‌رفتن طبیعی و حرکات چشم با یادگیری ماشینی</p>	<p>و Bremer همکاران (۱۰) ۲۰۲۱</p>

<p>LSTM که شامل داده‌های ردیابی چشم نیز بود، حاصل شد؛ این یافته‌ها تأیید می‌کند که مدل‌های LSTM برای پیش‌بینی مسیر را مرفتون در محیط‌های VR مناسب هستند و داده‌های ردیابی چشم به طور خاص برای پیش‌بینی‌های بلندمدت در فواصل کوتاه، مزیت قابل توجهی دارند</p>				
<p>مدل‌های SVR در تمام پارامترهای تحلیل شده، ضرایب همبستگی درون‌کلاسی (ICC) عالی را نشان دادند. میانگین خطاهای مطلق درصدی (MAE%) برای راه رفتن در طول گام، سرعت و فاصله پاکسازی پا به ترتیب $1/37$، $1/23$، $1/08$ درصد بود. این نتایج نشان‌دهنده دقت بالای این رویکرد یادگیری ماشین برای بهبود عملکرد حسگرهای پوشیدنی است</p>	<p>حسگر پوشیدنی: کفی‌های کفش هوشمند سفارشی مهندسی شده با عنوان SportSole که مجهز به حسگر هستند.</p> <p>مدل یادگیری ماشین: رگرسیون ماشین بردار پشتیبان (Support Vector Regression - SVR)</p>	<p>را مرفتون فرد سالم</p>	<p>تحلیل دقیق گام برداشتن در را مرفتون و دویدن با استفاده از مدل‌های یادگیری ماشین</p>	<p>Zhang و همکاران (۹۰۲۰۲۰)</p>

هدف از مطالعه حاضر، مروری بر رویکردهای هوش مصنوعی در بیومکانیک راه رفت نشان داد که حسگرهای پوشیدنی به حساسیت ۹۶۱/۰ و مساحت زیر منحنی مشخصه عملکرد گیرنده برابر با ۸۳۳/۰ دست یافتند و مدل‌های رگرسیون بردار پشتیبان، خطای درصدی مطلق میانگین کمتر از ۲/۱ درصد را برای پارامترهایی مانند سرعت و طول گام نشان دادند؛ همچنین حسگرهای تریبوالکتریک دقت بالای ۹۵ درصد را در تشخیص هویت فرد ارائه کردند.

در این مطالعه، یافته‌های محققانی که از سیستم ثبت حرکت بدون نشانگر طی راه رفت نشان داد که سیستم ثبت حرکت بدون نشانگر می‌تواند اندازه‌گیری‌های مکانی-زمانی و سینماتیک در صفحات ساجیتال و فرونتال را ارائه دهد و ضرایب همبستگی آن برای پارامترهای فضایی با سیستم مرجع، توافق نسبتاً خوبی نشان داد. با این حال، تنها پارامتر زمان نوسان در اندازه‌گیری متغیرهای زمانی، توافقی متوسط تا تقریباً کامل با سیستم مرجع داشت که نشان‌دهنده محدودیت آن در مقایسه با سیستم‌های مرجع است (۱، ۲). از مزیت‌های این مطالعات می‌توان به انجام پژوهش روی بیماران با اختلالات راه رفت نشان داد که این سیستم ردیابی حرکت بدون نشانگر، اندازه‌گیری‌های مکانی معتبر ارائه می‌دهد، ولی کاربرد مستقیم بالینی آن هنوز نیازمند تأیید بیشتر است.

مطالعات استفاده‌کننده از حسگر طی راه رفت نشان دادند که حسگرهای پوشیدنی، به ویژه نوع تریبوالکتریک، در ترکیب با روش‌های پیشرفتی یادگیری ماشین، امکان تحلیل پارامترهای راه رفت، طبقه‌بندی فعالیت‌ها و تشخیص وضعیت حرکتی افراد را فراهم می‌کنند (۳-۶). این سیستم‌ها عملکرد قابل قبولی در شرایط آزمایشگاهی نشان دادند، اما نتایج ممکن است در محیط‌های واقعی و با بیماران متفاوت، تغییر کند. مزایای اصلی شامل دقت تخمین پارامترها با خطاهای نسبتاً پایین، قابلیت خودتأمین انرژی سنسورهای تریبوالکتریک و عملکرد بالا در تشخیص هویت و ناتوانی حرکتی است. معایب و محدودیت‌ها شامل نوسان در عملکرد ویژگی در شرایط نصب سخت (مانند روی پشت بیمار که به ۶۴۳/۰ رسید) و وابستگی به بهینه‌سازی دقیق مدل یادگیری ماشین و انتخاب ویژگی‌ها است که نیازمند تنظیم برای هر ستلربوی کاربردی خاص می‌باشد.

مطالعات استفاده‌کننده از یادگیری ماشین نشان دادند که ترکیب ضبط ویدئویی با دوربین تلفن همراه، ذخیره‌سازی ابری و یادگیری عمیق ادغامی امکان تخمین و طبقه‌بندی وضعیت بدن را فراهم می‌کند و به نتایج نسبتاً موفقی دست یافته‌اند. ترکیب مدل بکه عصبی کانولوشنی عمیق و طبقه‌بندی کننده بیز ساده عملکرد قابل قبولی در طبقه‌بندی دست نشان داد؛ همچنین مدل‌های حافظه بلندمدت برای پیش‌بینی مسیر راه رفت در محیط واقعیت مجازی مناسب بودند. در پیش‌بینی‌های کوتاه‌مدت (۵۰ میلی‌ثانیه) خطای ۵/۱۴ میلی‌متر و در پیش‌بینی‌های بلندمدت‌تر (۲/۵ ثانیه) با استفاده از داده‌های ردیابی چشم، خطای ۶۵/۷۳ سانتی‌متر کاهش یافت (۹-۱۱). مزایای این رویکرد شامل سهولت جمع‌آوری داده‌ها با دوربین تلفن همراه و استفاده از ذخیره‌سازی ابری است؛ با این حال، معایب شامل تأخیر بالقوه در انتقال داده‌ها و پردازش سنگین مدل‌های یادگیری عمیق و وابستگی به کیفیت تصاویر در محیط‌های مختلف است.

محدودیت‌های مطالعه حاضر شامل تعداد محدود مطالعات موجود در زمینه به کار گیری هوش مصنوعی در تحلیل راه رفت، عدم بررسی جمعیت‌های ورزشکار و سالمند، تمرکز برخی پژوهش‌ها بر نمونه‌های کوچک یا گروه‌های خاص و کمبود استاندارد سازی در روش‌ها است. بنابراین، تعمیم یافته‌ها باید با احتیاط صورت گیرد و کاربرد مستقیم بالینی این فناوری‌ها همچنان نیازمند مطالعات گستردگر و جامع‌تر است. پژوهش‌های آینده باید با جمعیت‌های بالینی بزرگ‌تر و متنوع‌تر انجام شود و عملکرد الگوریتم‌های هوش مصنوعی در محیط‌های واقعی ارزیابی گردد. همچنین، توسعه چارچوب‌های استاندارد برای جمع‌آوری داده‌ها و تفسیر مدل‌ها می‌تواند کاربرد بالینی این فناوری‌ها را بهبود بخشد.

نتیجه گیری

یافته‌های این مرور نشان می‌دهد که به کارگیری روش‌های هوش مصنوعی و یادگیری ماشین، نقش مؤثری در بهبود دقت، قابلیت اطمینان و تفسیرپذیری داده‌های حاصل از حسگرهای پوشیدنی و سیستم‌های ثبت حرکت بدون نشانگر در تحلیل راه رفتن انسان دارد. نتایج حاکی از آن است که این رویکردها قادرند محدودیت‌های ذاتی حسگرهای روش‌های سنتی را تا حد زیادی جبران کرده و امکان استخراج پارامترهای مکانی-زمانی و سینماتیکی معتبر را فراهم سازند. با وجود عملکرد امیدوارکننده در شرایط آزمایشگاهی و برخی جمعیت‌های بالینی، شواهد موجود نشان می‌دهد که برای تعمیم‌پذیری نتایج و کاربرد بالینی گسترده، انجام مطالعات با حجم نمونه بزرگ‌تر، طراحی‌های استاندارد و ارزیابی در محیط‌های واقعی ضروری است.

پیروی از اصول اخلاق در پژوهش

مقاله حاضر از نوع مروری سیستماتیک می‌باشد، لذا این نوع مطالعات شامل اخذ کد اخلاق نیست.

حامی مالی

این مقاله توسط هیچ نهاد یا سازمانی حمایت مالی نشده است.

مشارکت نویسنده‌گان

مفهوم سازی: (لیلا صبوری، ابراهیم پیری)؛ اعتبار سنجی: (ابراهیم پیری)؛ تحلیل: (لیلا صبوری)؛ تحقیق و بررسی: (لیلا صبوری)؛ منابع نگارش پیش‌نویس: (لیلا صبوری، ابراهیم پیری)؛ ویراستاری و نهایی سازی نوشته: (همه نویسنده‌گان)؛ بصری سازی: (ابراهیم پیری)؛ نظارت: (امیرعلی جعفرنژاد گرو)؛ مدیریت پژوهش: (امیرعلی جعفرنژاد گرو)؛ تامین مالی: (حامی مالی ندارد).

تعارض منافع

نویسنده‌گان این مقاله اظهار دارند که بین انها تضاد در منافع وجود ندارد.

تشکر و قدردانی

نویسنده‌گان این مقاله از کلیه محققانی که اثر ارزشمندشان در این مقاله گزارش شده است تشکر می‌نمایند.

1. Schoenwether B, Ripic Z, Nienhuis M, Signorile JF, Best TM, Eltoukhy M. Reliability of artificial intelligence-driven markerless motion capture in gait analyses of healthy adults. *Plos one*. 2025;20(1):e0316119.
2. Ripic Z, Signorile JF, Best TM, Jacobs KA, Nienhuis M, Whitelaw C, et al. Validity of artificial intelligence-based markerless motion capture system for clinical gait analysis: Spatiotemporal results in healthy adults and adults with Parkinson's disease. *Journal of Biomechanics*. 2023;155:111645.
3. Peimankar A, Winther TS, Ebrahimi A, Wil UK. A machine learning approach for walking classification in elderly people with gait disorders. *Sensors*. 2023;23(2):679.
4. Obuchi SP, Kojima M, Suzuki H, Garbalosa JC, Imamura K, Ihara K, et al. Artificial intelligence detection of cognitive impairment in older adults during walking. *Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring*. 2024;16(3):e70012.
5. Galasso S, Baptista R, Molinara M, Pizzocaro S, Calabro RS, De Nunzio AM. Predicting physical activity levels from kinematic gait data using machine learning techniques. *Engineering Applications of Artificial Intelligence*. 2023;123:106487.
6. Bauman VV, Brandon SC. Gait phase detection in walking and stairs using machine learning. *Journal of biomechanical engineering*. 2022;144(12):121007.
7. Bacon KL, Felson DT, Jafarzadeh SR, Kolachalam VB, Hausdorff JM, Gazit E, et al. Relation of gait measures with mild unilateral knee pain during walking using machine learning. *Scientific Reports*. 2022;12(1):22200.
8. Guo X, He T, Zhang Z, Luo A, Wang F, Ng EJ, et al. Artificial intelligence-enabled caregiving walking stick powered by ultra-low-frequency human motion. *ACS nano*. 2021;15(12):19054-69.
9. Zhang H, Guo Y, Zanotto D. Accurate ambulatory gait analysis in walking and running using machine learning models. *Transactions on Neural Systems and Rehabilitation Engineering*. 2019;28(1):191-202.
10. Bremer G, Stein N, Lappe M, editors. Predicting future position from natural walking and eye movements with machine learning. *international conference on artificial intelligence and virtual reality (AIVR)*; 2021: 16(4): 2563-2577.
11. Lee P, Chen T-B, Liu C-H, Wang C-Y, Huang G-H, Lu N-H. Identifying the posture of young adults in walking videos by using a fusion artificial intelligent method. *Biosensors*. 2022;12(5):295.
12. Grosboillot N, Gallou-Guyot M, Lamontagne A, Bonnyaud C, Perrot A, Allali G, et al. Towards a comprehensive framework for complex walking tasks: characterization, behavioral adaptations, and clinical implications in ageing and neurological populations. *Ageing research reviews*. 2024;101:102458.
13. Piri E, Barghamadi M, Farzizade R. Comparison of the Effects of Immediate and Long-Term Water and Thera band Exercises on Loading Rate, Impulse, and Free Moment in People with Pronate Foot during Walking: A Clinical Trial. *J Gorgan Univ Med Sci* 2022; 24 (4) :10-19
14. Barghamadi, M., Piri, E., Behboodi, Z., Allahverdidost, H., Nosratihashi, A., & Imani, F. (2023). Effects of the Immediate and Long-term Water and Thera Band Exercises on Ground

Reaction Forces in People with Pronate Foot During Walking. *Journal of Paramedical Sciences & Rehabilitation*, 2023;12(1), 7-19.

15. Semaan MB, Wallard L, Ruiz V, Gillet C, Leteneur S, Simoneau-Buessinger E. Is treadmill walking biomechanically comparable to overground walking? A systematic review. *Gait & posture*. 2022;92:249-57.
16. Molavian R, Fatahi A, Abbasi H, Khezri D. Artificial intelligence approach in biomechanics of gait and sport: a systematic literature review. *Journal of Biomedical Physics & Engineering*. 2023;13(5):383.
17. Nadikattu RR. Implementation of new ways of artificial intelligence in sports. *Journal of Xidian University*. 2020;14(5):5983-97.
18. Zhou H, Park C, Shahbazi M, York MK, Kunik ME, Naik AD, et al. Digital biomarkers of cognitive frailty: the value of detailed gait assessment beyond gait speed. *Gerontology*. 2022;68(2):224-33.
19. Zhou Y, Romijnders R, Hansen C, Campen Jv, Maetzler W, Hortobágyi T, et al. The detection of age groups by dynamic gait outcomes using machine learning approaches. *Scientific reports*. 2020;10(1):4426.
20. Kosse NM, Vuillerme N, Hortobágyi T, Lamoth CJ. Multiple gait parameters derived from iPod accelerometry predict age-related gait changes. *Gait & posture*. 2016;46:112-7.
21. Harris EJ, Khoo I-H, Demircan E. A survey of human gait-based artificial intelligence applications. *Frontiers in Robotics and AI*. 2022;8:749274.
22. Mondal S, Das S, Vrana VG. How to bell the cat? A theoretical review of generative artificial intelligence towards digital disruption in all walks of life. *Technologies*. 2023;11(2):44.
23. Downs SH, Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. *Journal of epidemiology & community health*. 1998;52(6):377-84.
24. Salami F, Ozates ME, Arslan YZ, Wolf SI. Can we use lower extremity joint moments predicted by the artificial intelligence model during walking in patients with cerebral palsy in the clinical gait analysis? *PloS one*. 2025;20(4):e0320793.
25. Kim S, Kim HS, Yoo JI. Sarcopenia classification model for musculoskeletal patients using smart insole and artificial intelligence gait analysis. *Journal of Cachexia, Sarcopenia and Muscle*. 2023;14(6):2793-803.