Review Paper:
The Effect of Foot Orthosis on the Vertical Component of the Ground Reaction Force While Walking: A Review Study

Seyed Mohammad Mousavi Nodoshan¹ *, Ali Reza Taheri¹

1. Department of Orthotics and Prosthetics, School of Rehabilitation Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.

Abstract

Objective: Everyone is required to walk and stand for long time in daily activities, especially in the workplace. As a result, the Ground Reaction Force (GRF) on the components and joints is so great that they sometimes reach several times the weight of the body. These forces can have devastating effects on the feet and ankles. Various studies have suggested different methods and factors for reducing the GRF while walking. The purpose of this study was to identify the different causes of factors and methods affecting the GRF according to the current study.

Materials & Methods: This review study was conducted by searching the databases of ProQuest, PubMed, Web of Science, and MBS from 1995 to 2019. The keywords included ‘Ground Reaction Force’, ‘foot orthosis’, ‘walking’, ‘long term standing impact force’. After reviewing the abstract and title of each study by the authors, the criteria for selecting the article were considered. At the control level of each article, based on the main design of the search, from 1 to 5 were scored as randomized control trial, prospective controlled trial (Cohort), case-control, pre/post, observational clinical consensus, respectively. The quality of the articles was evaluated and scored using the Down and Black tool.

Results: Out of 82 articles, 21 articles were selected for analysis based on the criteria. Reporting scores, external validity, and internal validity varied between 4-8, 3-1, 5-2, 6-3, 7-4, respectively. From the studies performed on the molding insoles and the change in the loading rate of the maximum vertical GRF, there is a contradiction in proving it. Investigating the effect of foot orthoses in terms of material may lead to a further reduction in plantar.

Conclusion: Determining the effect of different components on GRF in the sole of the foot will help us better understand the factors involved in quality of life. The four domains of gender, post, material, and molding had different effects. Due to the lack of articles related to the study of the effect of gender and the creation of posts in the insole on the GRF can not be decisive.

Extended Abstract

Introduction

In a natural gait, the static phase plays an important role due to the foot contact with the ground [1] and the application of the Ground Reaction Force (GRF) [2]. Because according to Newton’s third law, the amount of this reaction force is equal to the body weight and in the opposite direction to the force that the body exerts on the ground as a result, the articulated moments created are directly related to the amount of GRF and the vertical distance from the center of force to the joint [3]. The vertical component of ground reaction force to the joint force is of greater
biomechanical importance due to its greater value than the anterior-posterior and internal-external components, as well as its shape of stability in individuals (ground reaction force increases by up to 120% of body weight from the static phase [4, 5]). Improper absorption of the impact forces of the foot on the ground is one of the biomechanical parameters that can cause problems for the foot due to the misalignment of different parts in the lower limb. According to the graph of the graph ground reaction force (Figure 1) there are to two peak points, there are two peak points [6, 7]; the first peak force is produced by the foot hitting the ground, and the second peak force is produced by the pressure of the toe to the ground [2, 8]. The ground reaction is a good criterion for identifying and classifying people based on the pattern of forces when walking, which can be different in the peak of forces.

In previous studies, the relationship between increasing the vertical component of the GRF and increasing the risk of injury to the body [4-6] has been investigated. If these forces are repeated, there is a possibility of joint damage, especially in continuous weighting [9-14].

Changes in the insoles can also change the lever arm of the GRF [15]. Although based on biomechanical principles and several studies, the use of insoles reduces the first peak of reaction force and loading rate, other studies have reported that insoles increase the first peak of reaction force in healthy people. Even in a study, it has been shown that different insoles have little effect on the kinetic variables of people while walking [16-18]. However, part of these differences is due to the kinetic and kinematic effects of displacement of the pressure center [19].

Effect of factors, such as insole material on the vertical reaction force of the earth has been considered by researchers [15] in some studies. With decreasing insole stiffness, the vertical reaction force of the Earth increased [20]; however, in some studies, no significant difference was observed in the effect of insole stiffness [14]. It is unavoidable that vertical forces can be reduced by making interventions in shoes and insoles for easier walking, but it is worth considering that in various studies, there is insufficient instability in different methods and factors on the reaction forces. This study aimed to determine the various factors and methods affecting the vertical components of reaction force and loading rates when walking in healthy individuals.

Materials and Methods

The present review study was conducted with extensive search in databases, such as ISI web of knowledge, Embase, PubMed, and Proquest from 1995 to 2019 using the keywords of ground reaction force, foot orthosis, walking, and impact force of long-term standing. To find more relevant articles, the sources of the selected articles were also examined. After reviewing the titles and abstracts of articles focusing on orthoses and GRF by the authors, in addition to answering the characteristics and questions of researchers in the next phase, the following inclusion criteria were considered for selecting and reviewing articles:

1. The article must be in English.
2. The article must be published from 1995 onwards.
3. The parameter measured in each article should be at least one of the parameters considered in the study (walking, foot orthoses, GRF, and vertical components).

The control level of each article was rated 5 to 1 for randomized control trials, prospective controlled trials (cohort), case-control studies, studies with pre/post-test design, and observational consensus-based clinical studies, respectively. Then, the quality of the articles was examined by the Down and Black tool and Pedro index [21, 22]. It should be noted that the accuracy and validity of this test have been proven as a criterion for reviewing and evaluating the quality of research studies. The quality of each article was evaluated separately by two experts, and then, using the Pearson correlation test, the relationship between the results was checked through SPSS V 16 software.

Results

Of the 82 articles obtained, 21 articles met the inclusion criteria (Figure 1). According to Table 1, four domains, including the effect of molding, post, material type, and gender were obtained. Seven articles examined the effect of molding on the GRF, and five articles, directly and indirectly, had examined the effect of the insole with a post on the GRF. The effect of material type on the GRF had been investigated in seven studies. Regarding gender, only two articles had focused on GRF without orthoses.

Some studies on the GRF had focused on unhealthy humans. There was an obvious discrepancy between the molding insoles and the change in the maximum vertical force of the ground reaction loading rate. Regarding the effect of the material, it can also be said that it may lead to a further reduction in the pressure of the sole of the foot. Regarding gender, although women have a higher loading rate in the GRF than men without the use of a device, no study was found on the use of insoles and the effect of gender.

According to the results of the quality evaluation of articles, about half of the studies were randomized clinical
 trials (rate of 5). The high scoring, external validity, internal validity, and Pedro index all indicated the relatively good level of trust and credibility of the articles.

Discussion and Conclusion

This study was done to investigate the changes in GRF produced by foot orthoses due to different effective factors and methods. Determining the effect of different components on GRF in the foot will help us in prescribing orthoses to increase the quality of life of people. The results showed that the four domains have different effects on the vertical component of ground reaction force.

Impact of molding

One of the features of foot molding for making insoles and shoes is that it creates a relatively complete contact with the sole of the foot, which is effective in reducing the forces and its proper distribution [6]. Molded orthoses with more contact between the foot and orthoses increase shock absorption and decrease GRF. A reduction in the first peak of the vertical ground reaction force by the semi-rigid insole has been able to prevent joint destruction damage to some extent [23] and on the other hand, reduce the pressure of the heel and the inner area of the front of the foot and the impact of forces to a quarter percent compared with without insole [6]. Significant reduction in leg fatigue after wearing these insoles [24] and a reduction in loading rate are evident [23, 25]. In contrast to these studies, Sloss reported a 3% -5% increase in the vertical force component in the first peak by carbon-molded orthoses [26] or MacLean did not observe significant changes in maximum impact force and loading rate with this type of orthosis [27]. The reason why these two studies are different despite proving the biomechanical alteration of the foot in the correct position with the insole may be related to other factors, such as the material and shape of the orthosis.

Post effect

One of the purposes of using foot orthoses is to place the foot and lower limb in a better functional position while maintaining a proper alignment and to improve the absorption impact [16, 28]. In a study combining the two methods of molding and post, a decrease in vertical loading rate was observed. Also, a significant difference in the reduction of the maximum vertical reaction force of the earth and the loading rate of the vertical reaction force of the earth during the static phase was proved by post [29-31]. Rome et al., along with the post, changed the insole material and density and the shape of the insole, and subsequently observed a decrease in loading change [32].

Impact of soft materials

Insole material is one of the factors with a great impact on changing reaction forces. Visco-elastic insoles, by following the physiological structure of the body in the face of excess-
Table 1. Analysis of articles related to orthotics and its effect on ground reaction force

<table>
<thead>
<tr>
<th>Area</th>
<th>Source</th>
<th>Author and Year of Publication</th>
<th>Subjects and Methodology</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>The softness of the floor</td>
<td>[38]</td>
<td>Shiba 1995</td>
<td>Evaluation of the effect of shock absorption with three types of insoles, including polymer rubber foam, viscoelastic polymer, and soft rubber on 16 people</td>
<td>There was a significant difference between the three types of insoles in the first peak of the vertical force of the earth, and in the subsequent peaks of this significant difference, between the viscoelastic insole and other insoles.</td>
</tr>
<tr>
<td>[14] Lin 2012</td>
<td></td>
<td></td>
<td>Investigating the effect of shoes with soft foam insoles, walking on different surfaces in 14 people</td>
<td>The effect of shoes with soft foam insoles on foot discomfort and fatigue. Ground and shoe conditions and prolonged standing affect a person’s lower limbs.</td>
</tr>
</tbody>
</table>
| [37] Alirezaie 2017 | | | Evaluation of the effect of shoe insole density on force components in 15 men with soft, semi-hard, and hard insoles | - Increasing the vertical load of GRF insole with soft shoes
- Reducing vertical loading with hard cushion insole |
| [39] Razeghi 2003 | | | Comparison of ground reaction force variables with the insole and cushioned heel and insole on 45 people | The vertical force on the silicone hill pad does not reduce the expected impact force, and the hypothesis that the shock absorption is better by the Hill Cushion is not easily proven. |
| [35] Creaby 2011 | | | Investigation of the effect of Hill Cup insole and insole on the force loading rate in 14 people | Increased loads and forces on the knee are involved in the spread and progression of knee injuries. |
| [36] Miller 1996 | | | Investigation of ground reaction force on 25 people with semi-rigid orthoses without ortheses and standard shoes | The maximum impact force is enough to reduce the vertical component of ground reaction force in the first 20% of the static phase. |
| [34] OLeary 2008 | | | Assessing 16 people with custom mold polyurethane insoles and without insoles to indicate how to affect impact absorption | - The shock absorber insole significantly reduces the maximum impact force of the ground on the shoe.
- Reducing the reaction force loading rate compared with shoes |
| [25] Maundermann 2003 | | | Investigating the effect of post and molding in 21 people | - Increasing the vertical loading rate with the post and increasing the shock absorption with the molded orthosis
- Reducing the vertical loading rate by molding and combining molding and post |
| [23] Eslami M, 2009 | | | Survey of 11 healthy men with shoes and boots with orthoses on the ground reaction force | 6% reduction of the semi-rigid insole in the first peak of the vertical reaction force of the ground.
- Limiting the back foot movements and rotation of the tibia and correcting the torque arm with the orthosis |
| [28] MacLean 2006 | | | The effect of molded orthoses on the kinematics of 15 healthy individuals with shoes, and shoes and insoles with posts | No significant change in maximum impact force and loading rate with the orthosis |
| [26] Sloss 2001 | | | Investigation of 10 insoles and three foot orthoses made of polypropylene, carbon on the vertical force of ground reaction | Increasing the vertical component of the force in the first peak with the orthosis and little changes in the second peak |
| [27] MacLean 2006 | | | Investigating the effect of molded orthoses on 15 healthy people with shoes, and shoes and insoles with posts | There are no significant changes in maximum impact force and loading rate with orthoses |
sive forces, have the best efficiency in absorbing impact and reducing the reaction forces of the ground [9]. Supporting softness next to a high heel shoe is recommended to control lateral movements and prevent foot injury [33, 34]. In some studies, a significant difference in fatigue and discomfort of people wearing visco-elastic insoles was observed [14, 21, 29]. The reduction of the maximum impact force of the ground and the loading rate has been more than the use of shoes [35], especially at the beginning of the static phase [36]. Alirezaie announced a reduction in the vertical load of GRF with a hard cushion insole and without soft shoes [37].

Contrary to these reports, some studies did not change the characteristics of the GRF in the use of viscoelastic insoles [38] and even soft orthoses, such as silicone pads did not reduce the impact force as expected, and we cannot support the hypothesis that heel cushions provide better shock absorption [39] or orthoses with softer materials than semi-rigid ones do not necessarily lead to a further reduction in sole pressure [40].

This difference in studies suggests that changes in gait parameters, including the GRF, depend on various factors, such as age, type of insole, the material of the shoe, and even the longevity of the soft insole.

The effect of gender

Although the gait parameters in men and women are somewhat different, the gait symmetry, which indicates the level of GRF in each limb, is slightly different between both genders [41]. Min-Chi Chiu stated that because women are shorter than men, they need more muscle activity to achieve a predetermined constant speed, which increases the maximum loading rate compared with men [42]. In one study, the loading component of GRF was higher in women than men despite different speeds [43].

Finally, to achieve more accurate results and resolve the contradiction between studies on the effect of material type and orthosis type mechanism on the vertical components of the reaction force, more research should be done with modern motion analysis systems [44]. One of the reasons for comfort and improvement of life indicators is related to the effect of insole comfort in terms of gender and proper distribution of GRF in the balanced use of leg muscles and absorption of blows caused by walking on feet and ankles. GRF may be affected by foot orthosis, indicating the existence of various and influential factors, such as age, gender, and orthosis preparation method, that should be further studied.

Conclusion

Determining the effect of different components on GRF in the sole of the foot can help us to better prescribe and understand the factors affecting the quality of life. Our results indicated that factors, such as gender, post, molding, and type of material, despite the effect on the GRF, provide different sign. Different variables should be considered in designing and manufacturing foot orthoses using different methods, and also changes in shoes and orthoses are needed to be considered to change the GRF.
Ethical Considerations

Compliance with ethical guidelines

This article is a meta-analysis with no human or animal sample. There were no ethical considerations to be considered in this research.

Funding

This research did not receive any grant from funding agencies in the public, commercial, or non-profit sectors.

Authors' contributions

Conceptualization and supervision: Ali Reza Taheri; Methodology: Mohammad Mousavi; Investigation, writing – original draft, and writing – review & editing, data collection, data analysis: Both author.

Conflict of interest

The authors declared no conflict of interest.

Acknowledgments

We would like to thank MS Rahmani, the head of the library of the Faculty of Rehabilitation Sciences, for providing us with resources.
مقاله پژوهشی:

پژوهشی تأکید ارزیابی بر مؤلفه عمودی عکس عکس عکس عمل زمین حین راه رفتن

سید محمد موسوی ندوشن

1. گروه ارزیابی و پروتیت دانشکده طومار توانبخشی دانشگاه علوم پزشکی اصفهان، ایران

2. کلیه‌های‌های

شرف عکس عکس عکس عکس عمل زمین، ارتز، راه رفتن

بررسی تأثیر ارتز پا بر مؤلفه عمودی عکس عکس عمل زمین حین راه رفتن

مقدمه

یک رفتار حركتی است که مشکلی از دو فاز یک رفتار حركتی است که مشکلی از دو فاز یک رفتار حركتی است که مشکلی از دو فاز یک رفتار حركتی است که مشکلی از دو فاز یک رفتار حركتی است که مشکلی از دو فاز یک رفتار حركتی است که مشکلی از دو فاز یک رفتار حركتی است که مشکلی از دو فاز یک رفتار حركتی است که مشکلی از دو فاز یک رفتار حركتی است که مشکلی از دو

1. Gait
2. Stance
3. Swing
مطالعات دیگر هم گزارش کردند که کفی موجب افزایش قله اول نیروی عکس العمل در افراد سالم می‌شود حتی در مطالعات دو نقطه اوج و یک نقطه عمق که بین دو اوج قرار دارد.

در بخشی از مطالعات پیشین ارتباط بین افزایش مؤلفه عمودی نیروی عکس العمل زمین و افزایش ریسک آسیب‌های اندازه‌گیری شده است.

در این مطالعه، مطالعه‌ای محدودیت‌های فیزیکی و نیروهای عکس العمل زمین در افراد سالم انجام شده است.

روش بررسی

این مطالعه در سیستم پیش‌بینی است که با کمک معادله‌هایی که در پایگاه‌های اطلاعاتی که می‌تواند با قدرت و اعتماد بالا پیش‌بینی کند.

reaction force, foot orthosis, walking, long term

4. Overuse Injuries
برای بررسی تأثیر ارتز پا بر منشئ عمودی نیروی عکس عمل زمین حین راه رفتن در زمینه، تعدادی از مقالات مناسب برای انتخاب شدند. برای این کار، پایگاه‌های PubMed، Embase، Proquest و ISI Web of Science مورد استفاده قرار گرفت. ۴۸ مقاله به صورت تصادفی انتخاب گردیدند. از این مقالات، ۲۱ مقاله به عنوان مقاله نهایی انتخاب گردیدند. در سطح شاهد هر مقاله بر اساس طرح اصلی جستجو آزمون تصادفی تصادفی و غیر تصادفی (cohort)، پیش‌زمینه، پیش‌زمینه پیش‌زمینه، پیش‌زمینه پیش‌زمینه (pre/post) و غیر تصادفی (non-randomized control trial) به صورت تصادفی انتخاب گردیدند.

به سطع، شکل‌های مطالعه برای تحلیل اطلاعات نمایش داده شده داشتند.

مقدمه
سید محمد موسوی ندوشن و علیرضا طاهری. بررسی تأثیر ارتز پا بر منشئ عمودی نیروی عکس عمل زمین حین راه رفتن. توانبخشی، ۱۹ (۱۴۰۰)، ۱۷-۲۲.

نتایج
شکل ۱: نحوه انتخاب مقالات مناسب این تحقیق

تصویر ۲: نمودار نحوه انتخاب مقالات مناسب این تحقیق

باستندان Impact force
نتیجه‌گیری

ارتباط بین شوک و حالت فیزیکی و سلامتی زمین در حالی که تغییرات در کفی کفش همبستگی قابل طراحی بخشی از فاکتور اصلی است. این مطالعه می‌تواند به بهبود طراحی کفش و بیماری‌ها در زمین انجام شود.

<table>
<thead>
<tr>
<th>موضوع</th>
<th>مطالعه‌ها</th>
<th>شناخته‌کننده</th>
<th>یادگیری‌گر</th>
<th>روش‌بندی و تفاوت‌های زمین</th>
<th>شناسایی</th>
<th>توانایی و منابع</th>
<th>شناسایی</th>
<th>روش‌بندی و تفاوت‌های زمین</th>
</tr>
</thead>
</table>

در مسیر راه‌رفتن.

1. شماره 1

Medial posting 2. Custom-molding 3. Medical posting and custom molding

| بررسی‌های دیگر | Maundmore, 2012 | | | | | |

Custom-molding و *Medical posting and custom molding*

| بررسی‌های دیگر | Chuo, 2006 | | | | |

Custom-molding و *Medical posting and custom molding*

| بررسی‌های دیگر | Edam, 2009 | | | | |

Custom-molding و *Medical posting and custom molding*

| بررسی‌های دیگر | Tenen, 2019 | | | | |

Custom-molding و *Medical posting and custom molding*

8 منبع: بررسی‌های و تحقیقات ژنرالی در مورد اثرات پست و کفی کفش و کفش‌های با کفی روی شوک و حالت فیزیکی و سلامتی زمین در حالی که تغییرات در کفی کفش همبستگی قابل طراحی بخشی از فاکتور اصلی است. این مطالعه می‌تواند به بهبود طراحی کفش و بیماری‌ها در زمین انجام شود.

سید محمد موسی ندوشن و علیرضا طاهری. بررسی تأثیر ارتز پا بر مؤلفه عمودی نیروی عکس العمل زمین حین راه‌رفتن. انتشارات مهندسی، 1403، شماره 12، صفحات 34-63.
نتایج گیری

پارک، 2018

شماره	منبع	اثرات	شرایط کفپوش زمین	استفاده از چگونگی استفاده از فوت ارتز ها	بررسی تأثیرات بالینی	تأثیرات پاهی	تأثیرات قهوه گیر	تأثیرات فوت ارتز ها	تأثیرات فیزیکی	تأثیرات عباسی	تأثیرات جنسیت
1	[1]	بررسی تأثیرات پاهی	شرایط کفپوش زمین	استفاده از چگونگی استفاده از فوت ارتز ها	بررسی تأثیرات بالینی	تأثیرات پاهی	تأثیرات قهوه گیر	تأثیرات فوت ارتز ها	تأثیرات فیزیکی	تأثیرات عباسی	تأثیرات جنسیت
2	[2]	بررسی تأثیرات پاهی و عباسی	شرایط کفپوش زمین	استفاده از چگونگی استفاده از فوت ارتز ها	بررسی تأثیرات بالینی	تأثیرات پاهی	تأثیرات قهوه گیر	تأثیرات فوت ارتز ها	تأثیرات فیزیکی	تأثیرات عباسی	تأثیرات جنسیت
3	[3]	بررسی تأثیرات پاهی	شرایط کفپوش زمین	استفاده از چگونگی استفاده از فوت ارتز ها	بررسی تأثیرات بالینی	تأثیرات پاهی	تأثیرات قهوه گیر	تأثیرات فوت ارتز ها	تأثیرات فیزیکی	تأثیرات عباسی	تأثیرات جنسیت
4	[4]	بررسی تأثیرات پاهی	شرایط کفپوش زمین	استفاده از چگونگی استفاده از فوت ارتز ها	بررسی تأثیرات بالینی	تأثیرات پاهی	تأثیرات قهوه گیر	تأثیرات فوت ارتز ها	تأثیرات فیزیکی	تأثیرات عباسی	تأثیرات جنسیت

بهار

1. شماره ۲۲ منبع
2. دوره ۱۴۰۰
3. نویسنده و سال انتشار
4. مداخله
5. Yung-Hui, 2005
6. Miller, 1996
7. OLeary, 2008
9. MacLean, 2008
10. King, 2002
هدف از این مطالعه، بررسی تغییرات در نیروی عکس العمل زمین تولید شده توسط ارتزهای پا در هنگام راه رفتن افراد است. برای این منظور، دو حالت با ارتز و بدون ارتز بر روی صفحه نیرو راه رفتند.

جدول ۱. نتایج بررسی تأثیر ارتزهای قالب‌گیری بر نیروی عکس العمل زمین

<table>
<thead>
<tr>
<th>شرایط</th>
<th>اندازه نیروی عکس العمل زمین (GRF)</th>
<th>نتایج</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱- Foot orthotic devices were fabricated from a non-weight-bearing, neutral positioned plaster cast.</td>
<td>0.80%</td>
<td></td>
</tr>
<tr>
<td>۱- Shoe only</td>
<td>۱.۵۰%</td>
<td></td>
</tr>
<tr>
<td>۱- Shoe + custom foot orthotic</td>
<td>۳.۶۰%</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۲. نتایج بررسی تأثیر ارتزهای قالب‌گیری بر نیروی عکس العمل زمین

<table>
<thead>
<tr>
<th>شرایط</th>
<th>اندازه نیروی عکس العمل زمین (GRF)</th>
<th>نتایج</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱- Foot orthotic devices were fabricated from a non-weight-bearing, neutral positioned plaster cast.</td>
<td>۵.۸۰%</td>
<td></td>
</tr>
<tr>
<td>۱- Shoe only</td>
<td>۱۰.۵۰%</td>
<td></td>
</tr>
<tr>
<td>۱- Shoe + custom foot orthotic</td>
<td>۲۲.۶۰%</td>
<td></td>
</tr>
</tbody>
</table>

همچنین مشخصات مربوط به ساختار و طراحی این ارتزها نیز به دست آمده که می‌تواند به افزایش کیفیت زندگی افراد کمک کند.

هدف از این مطالعه، بررسی تغییرات در نیروی عکس العمل زمین تولید شده توسط ارتزهای پا در هنگام راه رفتن افراد است. برای این منظور، دو حالت با ارتز و بدون ارتز بر روی صفحه نیرو راه رفتند.

جدول ۱. نتایج بررسی تأثیر ارتزهای قالب‌گیری بر نیروی عکس العمل زمین

<table>
<thead>
<tr>
<th>شرایط</th>
<th>اندازه نیروی عکس العمل زمین (GRF)</th>
<th>نتایج</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱- Foot orthotic devices were fabricated from a non-weight-bearing, neutral positioned plaster cast.</td>
<td>۰.۸۰%</td>
<td></td>
</tr>
<tr>
<td>۱- Shoe only</td>
<td>۱.۵۰%</td>
<td></td>
</tr>
<tr>
<td>۱- Shoe + custom foot orthotic</td>
<td>۳.۶۰%</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۲. نتایج بررسی تأثیر ارتزهای قالب‌گیری بر نیروی عکس العمل زمین

<table>
<thead>
<tr>
<th>شرایط</th>
<th>اندازه نیروی عکس العمل زمین (GRF)</th>
<th>نتایج</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱- Foot orthotic devices were fabricated from a non-weight-bearing, neutral positioned plaster cast.</td>
<td>۵.۸۰%</td>
<td></td>
</tr>
<tr>
<td>۱- Shoe only</td>
<td>۱۰.۵۰%</td>
<td></td>
</tr>
<tr>
<td>۱- Shoe + custom foot orthotic</td>
<td>۲۲.۶۰%</td>
<td></td>
</tr>
</tbody>
</table>

همچنین مشخصات مربوط به ساختار و طراحی این ارتزها نیز به دست آمده که می‌تواند به افزایش کیفیت زندگی افراد کمک کند.

هدف از این مطالعه، بررسی تغییرات در نیروی عکس العمل زمین تولید شده توسط ارتزهای پا در هنگام راه رفتن افراد است. برای این منظور، دو حالت با ارتز و بدون ارتز بر روی صفحه نیرو راه رفتند.

جدول ۱. نتایج بررسی تأثیر ارتزهای قالب‌گیری بر نیروی عکس العمل زمین

<table>
<thead>
<tr>
<th>شرایط</th>
<th>اندازه نیروی عکس العمل زمین (GRF)</th>
<th>نتایج</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱- Foot orthotic devices were fabricated from a non-weight-bearing, neutral positioned plaster cast.</td>
<td>۰.۸۰%</td>
<td></td>
</tr>
<tr>
<td>۱- Shoe only</td>
<td>۱.۵۰%</td>
<td></td>
</tr>
<tr>
<td>۱- Shoe + custom foot orthotic</td>
<td>۳.۶۰%</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۲. نتایج بررسی تأثیر ارتزهای قالب‌گیری بر نیروی عکس العمل زمین

<table>
<thead>
<tr>
<th>شرایط</th>
<th>اندازه نیروی عکس العمل زمین (GRF)</th>
<th>نتایج</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱- Foot orthotic devices were fabricated from a non-weight-bearing, neutral positioned plaster cast.</td>
<td>۵.۸۰%</td>
<td></td>
</tr>
<tr>
<td>۱- Shoe only</td>
<td>۱۰.۵۰%</td>
<td></td>
</tr>
<tr>
<td>۱- Shoe + custom foot orthotic</td>
<td>۲۲.۶۰%</td>
<td></td>
</tr>
</tbody>
</table>

همچنین مشخصات مربوط به ساختار و طراحی این ارتزها نیز به دست آمده که می‌تواند به افزایش کیفیت زندگی افراد کمک کند.

هدف از این مطالعه، بررسی تغییرات در نیروی عکس العمل زمین تولید شده توسط ارتزهای پا در هنگام راه رفتن افراد است. برای این منظور، دو حالت با ارتز و بدون ارتز بر روی صفحه نیرو راه رفتند.

جدول ۱. نتایج بررسی تأثیر ارتزهای قالب‌گیری بر نیروی عکس العمل زمین

<table>
<thead>
<tr>
<th>شرایط</th>
<th>اندازه نیروی عکس العمل زمین (GRF)</th>
<th>نتایج</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱- Foot orthotic devices were fabricated from a non-weight-bearing, neutral positioned plaster cast.</td>
<td>۰.۸۰%</td>
<td></td>
</tr>
<tr>
<td>۱- Shoe only</td>
<td>۱.۵۰%</td>
<td></td>
</tr>
<tr>
<td>۱- Shoe + custom foot orthotic</td>
<td>۳.۶۰%</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۲. نتایج بررسی تأثیر ارتزهای قالب‌گیری بر نیروی عکس العمل زمین

<table>
<thead>
<tr>
<th>شرایط</th>
<th>اندازه نیروی عکس العمل زمین (GRF)</th>
<th>نتایج</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱- Foot orthotic devices were fabricated from a non-weight-bearing, neutral positioned plaster cast.</td>
<td>۵.۸۰%</td>
<td></td>
</tr>
<tr>
<td>۱- Shoe only</td>
<td>۱۰.۵۰%</td>
<td></td>
</tr>
<tr>
<td>۱- Shoe + custom foot orthotic</td>
<td>۲۲.۶۰%</td>
<td></td>
</tr>
</tbody>
</table>

همچنین مشخصات مربوط به ساختار و طراحی این ارتزها نیز به دست آمده که می‌تواند به افزایش کیفیت زندگی افراد کمک کند.

هدف از این مطالعه، بررسی تغییرات در نیروی عکس العمل زمین تولید شده توسط ارتزهای پا در هنگام راه رفتن افراد است. برای این منظور، دو حالت با ارتز و بدون ارتز بر روی صفحه نیرو راه رفتند.

جدول ۱. نتایج بررسی تأثیر ارتزهای قالب‌گیری بر نیروی عکس العمل زمین

<table>
<thead>
<tr>
<th>شرایط</th>
<th>اندازه نیروی عکس العمل زمین (GRF)</th>
<th>نتایج</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱- Foot orthotic devices were fabricated from a non-weight-bearing, neutral positioned plaster cast.</td>
<td>۰.۸۰%</td>
<td></td>
</tr>
<tr>
<td>۱- Shoe only</td>
<td>۱.۵۰%</td>
<td></td>
</tr>
<tr>
<td>۱- Shoe + custom foot orthotic</td>
<td>۳.۶۰%</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۲. نتایج بررسی تأثیر ارتزهای قالب‌گیری بر نیروی عکس العمل زمین

<table>
<thead>
<tr>
<th>شرایط</th>
<th>اندازه نیروی عکس العمل زمین (GRF)</th>
<th>نتایج</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱- Foot orthotic devices were fabricated from a non-weight-bearing, neutral positioned plaster cast.</td>
<td>۵.۸۰%</td>
<td></td>
</tr>
<tr>
<td>۱- Shoe only</td>
<td>۱۰.۵۰%</td>
<td></td>
</tr>
<tr>
<td>۱- Shoe + custom foot orthotic</td>
<td>۲۲.۶۰%</td>
<td></td>
</tr>
</tbody>
</table>

همچنین مشخصات مربوط به ساختار و طراحی این ارتزها نیز به دست آمده که می‌تواند به افزایش کیفیت زندگی افراد کمک کند.
شماره 22 دوره 1400 بهار

شک به بدن می‌تواند باعث عوارض درد پا و کمر و در نهایت این قابلیت در ارتزهای خلل‌های تخربی مفاصل شود. قالب‌گیری شده وجود دارد که با ایجاد تماس بیشتر بین پا و شک می‌تواند به‌طور اولیه بالایی سطح جذب شک و کاهش درصدی اوج اول نیروی عمودی عکس العمل را باعث کاهش درصدی در اوج ۶ زمین ثانویه که کفی با تماس کامل می‌تواند فشار پاشنه را تا درصد و نیروی های ضربه‌ای فشار ناحیه داخلی جلوی پا را تا درصد نسبت به حالت بدون کفی کاهش دهد.

در پایان روز درصد و ۶٪ کاهش قابل توجهی در خستگی پاها (پس از پوشیدن کفی‌های قالب‌گیری شده گزارش شده است، اما هیچ بهبودی در ناراحتی درد کمر یا درد ران مشاهده نشده است. از طرف دیگر تغییر نرخ بارگذاری برای یک راه رفتن و بدون خستگی لازم است و این امر را در کلیه قابل‌گیری شده که یک مدل کلمه نزدیک برگزاری حداکثر نیروی عمودی مکس زمین شده، می‌توان مشاهده کرد.

برخی از مطالعات انسانی بر تأثیر قالب‌گیری علی‌رغم نتایج خوبی که در بیان می‌کنند که افزایش در اوج نیروی عمودی مکس زمین ایجاد می‌شود، اما این امر در کنار آسیب‌های مختلفی نیز می‌تواند منجر به افزایش درد و ناراحتی شود. این مطالعات نشان می‌دهند که در برخی موارد، افزایش در اوج نیروی عمودی مکس زمین با کف در نوین کمتر می‌تواند منجر به افزایش درد و ناراحتی شود.

در پایان، نتایج مطالعات مختلف نشان می‌دهند که افزایش در اوج نیروی عمودی مکس زمین با کف در نوین کمتر می‌تواند منجر به افزایش درد و ناراحتی شود. این مطالعات نشان می‌دهند که در برخی موارد، افزایش در اوج نیروی عمودی مکس زمین با کف در نوین کمتر می‌تواند منجر به افزایش درد و ناراحتی شود.

جدول ۱. بررسی کیفیت مقالات

<table>
<thead>
<tr>
<th>منبع</th>
<th>سطح شاهد</th>
<th>گزارش دهنده</th>
<th>روایی داخلی (بایاس)</th>
<th>روایی داخلی (مخدوش کننده)</th>
<th>روایی خارجی (بایاس)</th>
<th>روایی خارجی (مخدوش کننده)</th>
<th>امتیاز PEDRO</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEDRO</td>
<td>۵</td>
<td>King</td>
<td>۵</td>
<td>۴</td>
<td>۴</td>
<td>۵ (good)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>۶</td>
<td>Yung-hui</td>
<td>۶</td>
<td>۶</td>
<td>۶</td>
<td>۶ (good)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>۷</td>
<td>Laughton</td>
<td>۷</td>
<td>۷</td>
<td>۷</td>
<td>۷ (good)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>۸</td>
<td>Maclean</td>
<td>۸</td>
<td>۸</td>
<td>۸</td>
<td>۸ (good)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>۹</td>
<td>Sloss</td>
<td>۹</td>
<td>۹</td>
<td>۹</td>
<td>۹ (good)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>۱۰</td>
<td>Nezer</td>
<td>۱۰</td>
<td>۱۰</td>
<td>۱۰</td>
<td>۱۰ (good)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>۱۱</td>
<td>Chu</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱</td>
<td>۱۱ (good)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>۱۲</td>
<td>Eslami</td>
<td>۱۲</td>
<td>۱۲</td>
<td>۱۲</td>
<td>۱۲ (good)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>۱۳</td>
<td>Shiba</td>
<td>۱۳</td>
<td>۱۳</td>
<td>۱۳</td>
<td>۱۳ (good)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>۱۴</td>
<td>Lin</td>
<td>۱۴</td>
<td>۱۴</td>
<td>۱۴</td>
<td>۱۴ (good)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>۱۵</td>
<td>Creaby</td>
<td>۱۵</td>
<td>۱۵</td>
<td>۱۵</td>
<td>۱۵ (good)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>۱۶</td>
<td>Maclean</td>
<td>۱۶</td>
<td>۱۶</td>
<td>۱۶</td>
<td>۱۶ (good)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>۱۷</td>
<td>Sobel</td>
<td>۱۷</td>
<td>۱۷</td>
<td>۱۷</td>
<td>۱۷ (good)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>۱۸</td>
<td>Razighi</td>
<td>۱۸</td>
<td>۱۸</td>
<td>۱۸</td>
<td>۱۸ (good)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>۱۹</td>
<td>Munderman</td>
<td>۱۹</td>
<td>۱۹</td>
<td>۱۹</td>
<td>۱۹ (good)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>۲۰</td>
<td>Park</td>
<td>۲۰</td>
<td>۲۰</td>
<td>۲۰</td>
<td>۲۰ (good)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>۲۱</td>
<td>Allameezee</td>
<td>۲۱</td>
<td>۲۱</td>
<td>۲۱</td>
<td>۲۱ (good)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>۲۲</td>
<td>Tanan</td>
<td>۲۲</td>
<td>۲۲</td>
<td>۲۲</td>
<td>۲۲ (good)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>۲۳</td>
<td>Rome</td>
<td>۲۳</td>
<td>۲۳</td>
<td>۲۳</td>
<td>۲۳ (good)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>۲۴</td>
<td>Voloshin</td>
<td>۲۴</td>
<td>۲۴</td>
<td>۲۴</td>
<td>۲۴ (good)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>۲۵</td>
<td>Miller</td>
<td>۲۵</td>
<td>۲۵</td>
<td>۲۵</td>
<td>۲۵ (good)</td>
<td></td>
</tr>
</tbody>
</table>

منبع: PEDRO

5. Sloss
6. Maclean
چنس کفی از عواملی است که در تغییر نیروهای عکس عمل در زمین می‌باشد. این کفی‌ها می‌تواند باعث کاهش حاصل‌نموده‌ی حمله‌ای در زمین شود. همچنین استفاده از کفی‌های ویسکو الستیک باعث کاهش ناراحتی پا (مثل علائم بیماری‌های تخرب‌ساز مفصلی) و کاهش نیروهای عکس عمل زمین می‌شود. سبب کاهش حاصل‌نموده‌ی حمله نیروی عکس عمل زمین می‌شود. این کفی‌ها می‌تواند به کفی‌های ویسکو الستیک اشاره کرد که بدن در مقایسه با کفی‌های سخت‌تر بارگذاری می‌نماید و نهایتاً کاهش می‌یابد.

تأثیر پست نیروی عکس عمل زمین

تأثیرات استفاده از ارتزهای پا در پیاده‌روی است. در وضوح جلوده‌ای، بر جسم یک کف از طراحی شده، کف از پا بر اثر اکسیدزهای پا به نسبت اکسیدزهای پا بر اثر اکسیدزهای پا باعث کاهش حاصل‌نموده‌ی حمله‌ای حداکثر نیروی عکس عمل زمین می‌شود. در این شرایط، انتظار می‌رود که کفی‌های پا در مقایسه با کفی‌های سخت‌تر بارگذاری نمایند و نهایتاً کاهش می‌یابد.

تأثیر پست نیروی عکس عمل زمین در دوره‌های مختلف

تأثیر پست نیروی عکس عمل زمین در دوره‌های مختلف حاصله‌ی حمله نیروی عکس عمل زمین می‌شود. در این شرایط، انتظار می‌رود که کفی‌های پا در مقایسه با کفی‌های سخت‌تر بارگذاری نمایند و نهایتاً کاهش می‌یابد.

تأثیر پست نیروی عکس عمل زمین در دوره‌های مختلف

تأثیر پست نیروی عکس عمل زمین در دوره‌های مختلف حاصله‌ی حمله نیروی عکس عمل زمین می‌شود. در این شرایط، انتظار می‌رود که کفی‌های پا در مقایسه با کفی‌های سخت‌تر بارگذاری نمایند و نهایتاً کاهش می‌یابد.

تأثیر پست نیروی عکس عمل زمین در دوره‌های مختلف

تأثیر پست نیروی عکس عمل زمین در دوره‌های مختلف حاصله‌ی حمله نیروی عکس عمل زمین می‌شود. در این شرایط، انتظار می‌رود که کفی‌های پا در مقایسه با کفی‌های سخت‌تر بارگذاری نمایند و نهایتاً کاهش می‌یابد.
تأثیر جنسیت فرد بر نیروی عکس العمل زمین

تلاش‌هایی برای اندازه‌گیری تأثیر جنسیت فرد بر نیروی عکس العمل زمین در این فضایی که نشان‌دهنده میزان نیروی عکس عمل زمین هر اندام است. در تحقیقات مختلف،یافته‌ها به آن‌چه که جنسیت فرد تأثیرگذار در تغییر نیروی عکس عمل زمین است متأثر از تغییرات محیطی و عواملی که به آن فرد تأثیر می‌دهد. اگرچه این تأثیرها به جنسیت فرد اشاره نمی‌کنند، ولی اثربخشی تغییرات محیطی و عواملی که به آن فرد تأثیر می‌دهد، به آن‌گونه که تحقیقات مختلف نشان می‌دهند، تأثیر گزارش شده است. تحقیقات مختلف نشان دهنده می‌باشند که جنسیت فرد تأثیرگذار در تغییر نیروی عکس عمل زمین است.

در این مقاله، اثر جنسیت فرد بر نیروی عکس عمل زمین به‌عنوان یک تغییرات محیطی، به‌نوعی تأثیرگذار در تغییرات محیطی و عواملی که به آن فرد تأثیر می‌دهد، به آن‌گونه که تحقیقات مختلف نشان می‌دهند، تأثیر گزارش شده است. تحقیقات مختلف نشان دهنده می‌باشند که جنسیت فرد تأثیرگذار در تغییر نیروی عکس عمل زمین است.

ملاحظات اخلاقی

این مقاله یک فراتحلیل است و هیچ نمونه انسانی یا حیوانی ندارد. هیچ ملاحظات اخلاقی در نظر گرفته نشده است.

حامي مالی

این تحقیق هیچ گونه کمک مالی از سازمان‌های تأمین مالی در بخش‌های عمومی، تجاری یا غیرانتفاعی دریافت نکرد.

مشارکت نویسندگان

مهدی موسوی: تحقیق، تجزیه‌ی کلیه‌ها، بررسی و تهیه اطلاعات، تحلیل داده‌ها و کمیتی و توسعه‌ی نویسندگان.

مشارکت مهندسی

مهدی موسوی: تحقیق، تجزیه‌ی کلیه‌ها، بررسی و تهیه اطلاعات، تحلیل داده‌ها و کمیتی و توسعه‌ی نویسندگان.

مشارکت مهندسی

مهدی موسوی: تحقیق، تجزیه‌ی کلیه‌ها، بررسی و تهیه اطلاعات، تحلیل داده‌ها و کمیتی و توسعه‌ی نویسندگان.

مشارکت مهندسی

مهدی موسوی: تحقیق، تجزیه‌ی کلیه‌ها، بررسی و تهیه اطلاعات، تحلیل داده‌ها و کمیتی و توسعه‌ی نویسندگان.

مشارکت مهندسی

مهدی موسوی: تحقیق، تجزیه‌ی کلیه‌ها، بررسی و تهیه اطلاعات، تحلیل داده‌ها و کمیتی و توسعه‌ی نویسندگان.

مشارکت مهندسی

مهدی موسوی: تحقیق، تجزیه‌ی کلیه‌ها، بررسی و تهیه اطلاعات، تحلیل داده‌ها و کمیتی و توسعه‌ی نویسندگان.

مشارکت مهندسی

مهدی موسوی: تحقیق، تجزیه‌ی کلیه‌ها، بررسی و تهیه اطلاعات، تحلیل داده‌ها و کمیتی و توسعه‌ی نویسندگان.
References

