

Research Paper

Cross-cultural Adaptation and Psychometric Assessment of Evans & Craig's Interview Protocol for Persian-speaking Preschool Children With and Without Language Impairment

Zahra Saadati¹ , *Masoomeh Salmani² , Banafshe Mansuri¹ , Mozghan Asadi¹ , Fatemeh Paknazar^{3,4}

1. Department of Speech Therapy, School of Rehabilitation Sciences, Semnan University of Medical Sciences, Semnan, Iran.
2. Neuromuscular Rehabilitation Research Center, Research Institute of Neurosciences, Semnan University of Medical Sciences, Semnan, Iran.
3. Social Determinants of Health Research Center, Semnan University of Medical Sciences, Semnan, Iran.
4. Department of Epidemiology and Biostatistics, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.

Citation Saadati Z, Salmani M, Mansuri B, Asadi M, Paknazar F. Cross-Cultural Adaptation and Psychometric Assessment of Evans & Craig's Interview Protocol for Persian-speaking Preschool Children With and Without Language Impairment. *Archives of Rehabilitation*. 2026; 26(4):606-625. <https://doi.org/10.32598/RJ.26.4.4100.1>

<https://doi.org/10.32598/RJ.26.4.4100.1>

ABSTRACT

Objective Speech-language pathologists (SPLs) collect spontaneous language samples as a key component of clinical assessment protocols through contexts such as free play, picture description, and story retelling. Another context to collect language samples is through interviews. This study aimed to validate and examine the psychometric properties of Evans and Craig's interview protocol for Persian-speaking preschool children with and without language impairment.

Materials & Methods Using systematic random sampling, language samples were selected from 207 Persian-speaking preschool children in Semnan, Iran (51 children with language impairment, 156 children without language impairment) and analyzed. The children were assessed using the Persian version of the test of language development-3 (TOLD-P3) and Evans and Craig's 15-minute interview protocol. Cross-cultural adaptation was conducted according to Beaton et al.'s guidelines, followed by assessment of criterion validity, diagnostic accuracy, and responsiveness to change. Linguistic indices (mean length of utterance [MLU], number of conjunctions, ratio of complex to simple sentences, and type-to-token ratio [TTR]) and the overall language ability (OLA) score derived from the TOLD-P3 were calculated. All scores were entered into SPSS software, version 24. The scores of the two groups were compared using appropriate statistical tests. The significance level was set at 0.05.

Results The OLA score was 102.25 in typically developing children and 75 in children with language impairment. The mean MLU (6.11 vs 5.26; $P=0.034$) and number of conjunctions (13.37 vs 7.53; $P=0.001$) were significantly different between the two groups, but the ratio of complex to simple sentences (25.71 vs 25.87; $P=0.63$) and TTR (0.44 vs 0.46; $P=0.30$) were not significantly different. Except for TTR, the other three indices showed significant correlations with OLA score ($P<0.05$). Regarding responsiveness, TTR was the only index that revealed significant changes at the six-month follow-up ($P=0.004$). The cut-off points were determined as follows: For MLU, <4.5 ; for number of conjunctions, <7 ; for ratio of complex to simple sentences, $<14\%$; and for TTR, 0.45–0.65, all of which may indicate language impairment in children aged 5–6.

Conclusion The Persian version of Evans & Craig's interview protocol can be used in Persian-speaking children aged 5–6. SPLs can use this valid and practical tool to screen for and identify language impairments in preschoolers. The interview protocol has acceptable accuracy in distinguishing syntactic and semantic differences between children with and without language impairment.

Keywords Language disorders, Children, Speech-language pathology, Interview, Psychometrics, Sensitivity, Specificity

Received: 05 Aug 2025

Accepted: 06 Dec 2025

Available Online: 01 Jan 2026

*** Corresponding Author:**

Masoomeh Salmani, PhD.

Address: Neuromuscular Rehabilitation Research Center, Research Institute of Neurosciences, Semnan University of Medical Sciences, Semnan, Iran.

Tel: +98 (912) 8310924

E-Mail: salmani_masoome@yahoo.com

Copyright © 2026 The Author(s).
This is an open access article distributed under the terms of the Creative Commons Attribution License (CC-By-NC: <https://creativecommons.org/licenses/by-nc/4.0/legalcode.en>), which permits use, distribution, and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

English Version

Introduction

Language development is one of the most important developmental milestones in the early years of a child's life [1]. Language skills not only form the foundation of communicative abilities but also serve as essential prerequisites for learning in educational settings, cognitive growth, and the establishment of social relationships [2]. However, a considerable number of children experience delays or disorders in language acquisition without any underlying hearing, intellectual, or neurological impairments. This group, commonly referred to as children with developmental language disorders or specific language impairment, constitutes approximately 7–10% of preschool-aged children [3]. Late or inaccurate diagnosis of this condition can lead to long-term consequences in academic, emotional, and social domains, including poor academic achievement, social withdrawal, reduced self-esteem, and an increased risk of mental health problems in adulthood [4, 5]. Therefore, accurate and timely assessment of children's language abilities plays a crucial role in early intervention and improving their overall quality of life [6]. To assess children's language abilities, speech-language pathologists (SPLs) employ a range of methods generally categorized as structured and non-structured. Non-structured methods, such as spontaneous language sample elicitation during free play, picture description, and story retelling, are recognized as procedures with high diagnostic validity [7, 8]. These approaches elicit natural language behaviors in contexts resembling everyday communication. For instance, Wu et al. demonstrated that interactive play environments not only enhance children's communicative quality but also reduce their anxiety, leading to more enriched interactions [9]. Despite these advantages, non-structured methods are often limited by factors such as the need for multiple sampling sessions, dependence on the clinician's skills in interaction management, and the lack of standardized administration protocols [10]. Conversely, structured methods—including formal tests, imitation tasks, and picture-based assessments—are advantageous in terms of time efficiency, comparability, and precision in evaluating specific linguistic domains such as syntax and vocabulary [11, 12]. Nevertheless, these methods may be less effective in representing children's spontaneous language performance in natural conversational situations [13–16].

In recent years, efforts have been made to combine the advantages of both structured and non-structured methods in language sample elicitation. One of the innovative approaches in this field is semi-structured clinical interviews, which employ both fully structured tasks and spontaneous speech, while allowing researchers to obtain reliable and comparable linguistic data [15, 17]. Evans and Craig's interview protocol (1992) is one of the most well-known methods in this field. It consists of a 15-minute conversation focusing on the topics "family", "school", and "leisure activities" [18]. Studies have shown that children produce a greater number of utterances using this approach compared to free-play approach, and that their speech includes more complex syntactic and semantic structures [14, 17, 19]. Moreover, the data elicited through this interview demonstrate greater stability than those obtained from free play and are less influenced by external factors or the child's momentary mood [20]. Furthermore, Nelson (1998) reported that adding guided questions to this protocol can elicit more affective and content-rich responses from children [21]. A review of the existing studies indicates that in all studies employing language samples from children, morphological indices (e.g. use of inflectional morphemes), syntactic indices (e.g. mean length of utterance [MLU], ratio of complex to simple sentences, and number of conjunctions), and semantic indices (e.g. type–token ratio [TTR]) have been identified as important criteria for distinguishing children with and without language impairment [22–24].

Despite the advancements, there are still notable gaps in research on language assessment of children through interviews. The majority of existing studies have been conducted in English-speaking countries, including populations that are relatively homogeneous in terms of language, culture, and socioeconomic status [25]. Commonly used Persian tools, such as the test of language development-3 (TOLD-3), are outdated and lack sufficient applicability for analyzing natural conversational samples [26]. Therefore, there is a clear need for a culturally adapted, efficient, and time-effective tool to identify children at risk for language impairment in Iran. Considering the high prevalence of language disorders in the country [27] and their adverse effects on academic performance and family interactions [28, 29], the psychometric evaluation of Evans & Craig's interview protocol for Persian-speaking preschool children can be helpful. Language assessment instruments for Persian-speaking children should be redesigned through standardized procedures of translation, cultural adaptation, and psychometric validation [30, 31]. The present study, therefore, aimed to examine the psychometric properties

of the Persian version of Evans & Craig's interview protocol, providing a foundation for early identification, the development of targeted interventions, and the generation of valid, culturally adapted data in the field of child language assessment.

Materials and Methods

Study design and participants

This is a descriptive psychometric study with a cross-sectional design. The participants were recruited from among second-year preschool students at non-profit (private) preschools in Semnan, Iran, during the 2022–2023 school year (total study population=620). According to Morgan's table, the required sample size was estimated at 234. However, since schools were used as the unit for randomization and sampling, the final number of children exceeded the estimated number, so 340 samples were selected. To minimize the effects of socioeconomic factors, reduce selection bias, and protect against randomization bias, a cluster random sampling method was employed. Inclusion criteria were monolingual proficiency in Persian and no record of receiving specialized or counseling services during the preschool screening process (including hearing, vision, speech-language, and cognitive assessments). Using the TOLD-3, 60 children (25 girls and 35 boys) were identified as having language impairment. According to Morgan's table, a minimum of 52 children were required for this group. Among the 280 children who demonstrated typical language development based on the TOLD-3 score, 162 were selected using Morgan's table to create the comparison group. These normal peers were selected using systematic random sampling, ensuring proportional representation and adherence to the sampling framework. A higher number of children with normal language development were intentionally included for the following reasons: To better represent the natural variability of language and obtain more reliable descriptive indices of central tendency and dispersion, to enhance the generalizability of the findings, to increase the statistical power of the study, to allow for more precise calculations of sensitivity and specificity, and to enable the determination of cutoff points and the definition of normal ranges. Inclusion criteria for language samples were as follows: Being audible and transcribed clearly, with at least two minutes of effective interaction between the child and the examiner. If a language sample was from a child who had no cooperation during the assessment with TOLD-3, it would be excluded from analysis.

Instruments

The TOLD-3 is one of the most valid and comprehensive instruments for assessing language development in children. It consists of six core subtests (picture vocabulary, relational vocabulary, oral vocabulary, grammatical understanding, sentence imitation, and grammatical completion) and three supplementary subtests (word discrimination, phonemic analysis, and word articulation). The reliability of the Persian TOLD-3 ranges from 0.40 to 0.70, and its construct validity for age differentiation ranges between 0.28 and 0.60. The test also has a strong ability to differentiate among children with learning disabilities, language delay, intellectual disabilities, and ADHD. The six core subtests have internal consistency of 0.44-0.79 (mean=0.55). Factor analysis confirmed that all core subtests adequately represent the overall language ability (OLA) as the primary composite quotient. The discriminative power of the six subtests was found to be excellent (0.90–0.97). By combining the standardized scores from the six core subtests, six composite quotients can be calculated. In the present study, the OLA quotient, derived from summing the scores of six core subtests, was used to screen children with and without language impairment. Other composite quotients were not used because they are based on only two subtests and are designed to assess specific domains, such as listening or grammatical skills. According to the test manual, at least one standard deviation below the mean was considered indicative of language impairment [26]. The test results for each participant were recorded on a designed individual scoring sheet.

Evans & Craig's interview protocol consists of a semi-structured interview designed for language sampling of children aged 8-9 years, with three 5-minute sections of family, school, and leisure activities. The protocol was developed in 1992 to facilitate the production of spontaneous speech within an interactive context, using open-ended questions, natural interactions, and flexible response options to collect valid language samples suitable for analysis of syntactic, semantic, and discourse-level indices. Its short duration and semi-structured design allow simultaneous application in clinical and research settings with time constraints. The psychometric properties of the original version of the interview protocol, including content and construct validity, test-retest reliability, and inter-rater reliability, have been confirmed. Its inter-rater reliability, after re-coding 10% of the samples by a second rater and calculating agreement coefficients, exceeded 85% across all indices.

Psychometric assessment

To assess content validity, five SPLs evaluated the items, and both content validity ratio (CVR) and content validity index (CVI) were calculated, all exceeding the recommended thresholds. Construct validity was examined by comparing the syntactic and semantic features of children's speech during the interview with those observed during free play. Additionally, cross-cultural adaptation was assessed by experts by examining the cultural appropriateness of the protocol for Persian-speaking children. An SPL conducted the interviews in a quiet room in the school. All sessions were audio-recorded and transcribed based on the communication unit (C unit) guidelines and according to the Persian language assessment, remediation, and screening procedure (P-LARSP). The language samples were analyzed by the first author (an MS student in speech-language pathology, who received P-LARSP education) based on structural (syntactic and semantic) and discourse-level indices. In the syntactic domain, variables included MLU (average number of words per C units), the ratio of complex to simple sentences, and the number of conjunctions. In the semantic domain, the TTR was examined. In the discourse domain, indices included self-expressive behaviors (verbal requests, clarification, and statements) and verbal responsiveness. Fluency was assessed through speech disruptions, including filled pauses, unfilled pauses, phrase revisions, and phrase repetitions. For the communication partner, variables such as average number of C units, length of C units, topic shifts, and turn-taking were recorded and compared. Criterion validity of the interview protocol was evaluated by calculating the correlation between the language indices obtained from the interview and the OLA quotient in the TOLD-3. To assess responsiveness to change, the syntactic and semantic indices were evaluated at a 6-month interval. Finally, the overall accuracy of the syntactic and semantic indices in correctly classifying children into the language impairment and typically developed groups was evaluated.

Data analysis

Data were analyzed in SPSS software, version 24. Initially, descriptive statistics (Mean \pm SD) were used to describe the data. Subsequently, to examine the diagnostic accuracy of language indices in distinguishing between children with language impairment and normal peers, the receiver operating characteristic (ROC) curve analysis was employed. In this analysis, one of the most important measures is the area under the curve (AUC). This measure indicates the extent to which a variable

(e.g. MLU or ratio of complex to simple sentences) can differentiate between the two groups of children with and without language impairment. In this study, an AUC >0.70 indicated an appropriate discriminative measure, meaning that the indices had a relatively high ability to correctly identify and differentiate between children with and without language impairment.

To determine the cutoff point for each index, the Youden index (J=Sensitivity+Specificity-1) was used to achieve an optimal balance between sensitivity and specificity. Sensitivity and specificity were calculated based on a classification matrix for each index, using the following parameters: True positive (TP), i.e. the correct identification of a child with language impairment; false positive (FP), i.e. the incorrect identification of a typically developed child as a language-impaired child; true negative (TN), i.e. the correct identification of a typically developed child; and false negative (FN), i.e. the failure to identify a child with language impairment. Based on these parameters, sensitivity, specificity, and accuracy were calculated as follows (Equation 1):

$$\text{Sensitivity} = \frac{\text{TP}}{\text{TP} + \text{FN}}$$

$$1. \text{ Specificity} = \frac{\text{TN}}{\text{TN} + \text{FP}}$$

$$\text{Accuracy} = \frac{\text{TP} + \text{TN}}{\text{TP} + \text{TN} + \text{FP} + \text{FN}}$$

$$\text{Youden's Index} = \text{Sensitivity} + \text{Specificity} - 1$$

Criterion validity of the interview protocol was evaluated by using the Spearman correlation coefficient. To assess responsiveness to change, the syntactic and semantic indices were re-evaluated using the Wilcoxon signed-rank test to assess their sensitivity to improvements or declines in language performance.

Results

The SPLs confirmed that the Persian version of the interview protocol was valid, understandable, usable, and highly relevant to the objectives of language sampling. After applying the inclusion and exclusion criteria, 18 language samples were removed from the study. Among the children with language impairment, 9 children did not engage verbally with the rater prior to assessment, reducing the number of samples in this group to 51. Additionally, 6 language samples from typically developing children were excluded due to their refusal to participate, leaving 156 remaining samples in the healthy group.

Table 1. The OLA scores based on gender for the study groups

Gender	Typically Developed Children (n=156)		Children With Language Impairment (n=51)		Total No.
	No. (%)	Mean±SD	No. (%)	Mean±SD	
	Sample Size	OLA	Sample Size	OLA	
Boys	93(59.6)	101.48±9.48	30(58.8)	76.50±5.10	123
Girls	63(40.4)	103.38±10.01	21(48.2)	72.86±8.06	84
Total	156(100)	102.25±9.92	51(100)	75.00±6.66	207

The gender distribution and OLA scores are presented in **Table 1**. The difference between the two groups in the mean OLA quotient was statistically significant, as determined by the Mann–Whitney U test ($P<0.001$). The mean age of the language-impaired group was 5.03 ± 0.50 years, and the mean age of the typically developed group was 5.03 ± 0.40 years. The difference between the two groups was not statistically significant ($P>0.05$). Considering the different durations of the interviews (approximately 6 minutes for the language-impaired group and 9 minutes for the typically developed group), the use of time-based cutoffs (e.g. 10 minutes of interaction) or utterance-based cutoffs (e.g. 100 analyzable utterances) was deemed inappropriate. Therefore, only ratio-based indices were reported in the article. **Table 2** presents the means and standard deviations for these indices and the results of their comparison between the two groups.

The correlation assessment of the syntactic and semantic indices with the OLA score showed that the highest correlations were observed for the number of conjunctions ($r=0.26$, $P<0.001$) and MLU ($r=0.19$, $P=0.005$), whereas the TTR did not show a statistically significant correlation. **Table 3** summarizes the sensitivity, specificity, and AUC of the main language indices, along with their clinical interpretations based on ROC analysis.

Among the syntactic indices, the ROC analysis showed that the number of conjunctions had the highest ability to identify children with language impairment, with a sensitivity of 91.7% and specificity of 58.3%, making it particularly suitable for initial screening. The ratio of complex to simple sentences showed the highest specificity (93.8%), making it the best indicator for confirming typical language development; however, its low sensitivity (47.9%) indicates a relative limitation in identifying children with language impairment. The MLU exhibited balanced sensitivity and specificity, ranging 70–75%, with an AUC of 0.75–0.82, indicating that it is a reliable index for differentiating between children with and without language impairment.

Table 4 presents the optimal cutoff points obtained for each language index, along with their descriptions. ROC analysis identified the cutoff points for distinguishing between children with and without language impairment as follows: For MLU, 4.05–4.40 words per C unit; for ratio of complex to simple sentences, 29.14%; for number of conjunctions, 7–8; and for TTR, 0.42–0.45. This TTR range yielded the highest Youden's index (0.38), reflecting an optimal balance between sensitivity and specificity. Clinically, a TTR at or below 0.42–0.45 suggests a higher likelihood of language impairment, whereas higher values indicate a greater probability of

Table 2. Ratio-based language characteristics of children in two study groups

Groups	MLU (words/C unit)		No. of Conjunctions		Ratio of Complex to Simple Sentences		TTR	
	Mean±SD	P	Mean±SD	P	Mean±SD	P	Mean±SD	P
Children with language impairment	5.25±2.51	0.034	7.53±9.29	0.001	28.87±1.207	0.632	0.45±0.13	0.30
Typically developed children	6.11±2.78		132.37±1.144		28.71±1.593		0.44±0.12	

Table 3. Diagnostic performance of selected language indices based on ROC analysis

Index	Sensitivity (%)	Specificity (%)	AUC	Clinical Interpretation
No. of conjunctions	91.7	58.3	0.795	Suitable for initial screening
Ratio of complex to simple sentences	47.9	93.8	0.770	Suitable for confirming normal language development
MLU	70.8	75.0	0.791	Balanced and reliable index
TTR	72.9	70.8	0.758	Moderate accuracy; complements other indices

Archives of
Rehabilitation

normal language development. The proposed screening order was: MLU, ratio of complex to simple sentences, number of conjunctions, and TTR. This logical sequence enhances diagnostic accuracy compared with reliance on a single index alone.

To assess the classification accuracy of each index, a confusion matrix was used. The results are presented in **Table 5**. This matrix shows the number of children in each group who were correctly or incorrectly classified by each index. According to the results in this table, the ratio of complex to simple sentences exhibited the highest specificity (78%), making it more suitable for confirming normal language development. The number of conjunctions showed the highest sensitivity (73%),

making it more effective for initial screening. The TTR demonstrated the weakest performance based on sensitivity and specificity, and therefore, it is not reliable for diagnosis on its own.

Discussion

The present study aimed to examine the psychometric properties of the Persian version of Evans & Craig's interview protocol for the identification and screening of children aged 5–6 years with language impairment. SPLs approved the Persian version for use among Persian-speaking children. The interview administration time was less than 10 minutes for both children with and without language impairment. Given the significant dif-

Table 4. The cutoff points determined for selected language indices

Priority	Index	Recommended Cutoff	Description
1	MLU	4.5	As an average sentence length in children, it serves as the primary indicator of sentence structure complexity.
2	Ratio of complex to simple sentences	14%	Children with values $\leq 14\%$ are more likely to have language impairment.
3	Number of conjunctions	7	A number of conjunctions ≤ 7 indicates a higher probability of language impairment.
4	TTR	Normal range: 0.45–0.65	The values <0.45 suggest possible language impairment, while values 0.45–0.65 show the normal range.

Archives of
Rehabilitation**Table 5.** Classification accuracy of selected language indices based on the confusion matrix

Index	TP	TN	FP	FN	Sensitivity	Specificity	Accuracy
MLU	24	103	53	27	0.47	0.66	0.61
Ratio of complex to simple sentences	18	121	35	33	0.35	0.78	0.67
Number of conjunctions	37	88	68	14	0.73	0.56	0.61
TTR	25	65	91	26	0.49	0.42	0.44

Archives of
Rehabilitation

ference in interview duration between children with and without language impairment, ratio-based indices were used to assess the protocol's sensitivity, specificity, cut-off points, and criterion validity.

The MLU was significantly higher in typically developing children than in children with language impairment. This index demonstrated relatively high sensitivity and moderate specificity, indicating that it correctly identified a large number of children with language impairment but had limitations in fully distinguishing them from typically developing children. These findings are consistent with the studies of Evans and Craig [32] and Kazemi et al. [33], confirming that reduced MLU in children with language impairment is a stable and clinically relevant indicator of language difficulties. However, MLU alone is insufficient to confirm normal language development, as some children with normal language development may exhibit relatively short utterances due to individual or environmental factors. Therefore, examining additional indices is essential for achieving accurate diagnostic conclusions.

The ratio of complex to simple sentences yielded a notable finding. Although the mean values did not differ significantly between the two groups, the index's specificity was high, indicating that it accurately identified children with normal language development. However, its sensitivity was low, and it failed to identify many children with language impairment. Consequently, the ratio of complex sentences is more suitable for confirming normal language development rather than for screening language disorders. These results are consistent with findings reported in previous studies [34, 35].

Another syntactic index that yielded reliable results in this study was the number of conjunctions. This index was among the most precise syntactic indicators for identifying children with language impairment, exhibiting very high sensitivity while maintaining moderate specificity. This means that the measure was highly effective in detecting children with language difficulties, but it could misclassify some typically developing children as impaired. Consequently, it serves as an ideal index for initial screening. Given that the use of conjunctions reflects advanced syntactic and discourse development, a reduced number of conjunctions may serve as a warning sign of language limitations.

While the syntactic indices demonstrated relatively good discriminative power, the only semantic index, the TTR, showed low diagnostic ability in the ROC analysis. Its sensitivity and specificity were also moderate to

low. These findings are consistent with previous studies that have criticized the TTR as being dependent on sample length. In particular, in short language samples, which are common in clinical settings, this index is not reliable for identifying or screening children with and without language impairment, alone without complementary indices.

The combination of multiple indices with high sensitivity, such as the number of conjunctions and MLU, together with indices having high specificity, such as the ratio of complex to simple sentences, resulted in improved classification accuracy. Analysis of the confusion matrix indicated that the simultaneous use of the selected indices significantly enhanced the interview protocol's predictive power and reduced both type I and type II errors in diagnosis. This finding has important clinical implications, particularly for the screening and early identification of children with language impairment.

Despite its important findings, this study had several limitations that should be considered when interpreting the results. Although a substantial number of typically developing children were included, the data did not follow a normal distribution. Therefore, generalization of the findings to other age and cultural groups should be done with caution. To achieve more consistent and balanced indices, the inclusion of bilingual groups and children with comorbid conditions (such as ADHD or cognitive disorders) is recommended. It should be emphasized that the results of this study cannot be generalized to these groups. Additionally, the study duration was limited, and some language changes might only become apparent over a longer period. The protocol primarily focused on language indices, and other psychosocial and environmental dimensions were not comprehensively examined.

To enhance the generalizability of the findings and further examine the validity and applicability of the interview protocol, studies with larger and more geographically, culturally, and linguistically diverse populations (including multilingual children and those with language impairments for various reasons) are recommended. Further studies are recommended to clarify the efficiency of the interview protocol for long-term assessment and monitoring of language development, as well as for evaluating the effects of therapeutic interventions on language indices. Additionally, using pragmatic and communicative indices, along with indices obtained from the interview protocol, in future studies may assess and improve SPLs' ability to diagnose and screen for language impairments.

Conclusion

This Persian version of Evans & Craig's interview protocol is a valid and reliable tool for Persian-speaking children aged 5-6 years. Therefore, SPLs can use this tool to screen for and identify language impairments in preschool students. The protocol can detect syntactic and semantic differences between children with and without language impairment. Moreover, the correlation of language indices obtained from the interview protocol with the OLA score in the TOLD-3 indicated satisfactory criterion validity. This study suggested that the tool is sensitive to language changes following intervention and can effectively monitor therapeutic progress.

For initial screening of children suspected of language impairment, highly sensitive indices, such as the number of conjunctions, are recommended. To confirm language competence, indices with high specificity, such as the ratio of simple to complex sentences, are more appropriate. Balanced indices, such as the MLU and the TTR, when used in combination with other measures, provide a more comprehensive view of a child's language status.

Ethical Considerations

Compliance with ethical guidelines

The study was approved by the Ethics Committee of [Semnan University of Medical Sciences](#), Semnan, Iran (Code: IR.SEMUMS.REC.1402.227). Parents provided written informed consent, and the children themselves gave verbal consent and expressed their willingness to participate in the study.

Funding

This article was extracted from the thesis of Zahra Saadati at the Department of Speech-Language Therapy, School of Rehabilitation, [Semnan University of Medical Sciences](#). This research did not receive any specific grant from funding agencies in the public, commercial, or not-for profit sectors.

Authors' contributions

Conceptualization, project management, supervision: Masoumeh Salmani, Banafsheh Mansouri, Fatemeh Paknazar, and Mozhgan Asadi; methodology, validation, analysis: Zahra Saadati, Masoumeh Salmani, Fatemeh Paknazar, Banafsheh Mansouri; Investigation: Zahra Saadati, Masoumeh Salmani, Mozhgan Asadi;

Resources, writing: All authors; editing & review: Masoumeh Salmani and Zahra Saadati.

Conflict of interest

The authors declare no conflicts of interest.

Acknowledgments

The authors would like to thank the parents and children who participated in this study for their cooperation as well as Ms. Maryam Imani Dizej Yekan (an MS student in Speech-Language Therapy) for her assistance in the inter-rater reliability assessment.

This Page Intentionally Left Blank

مقاله پژوهشی

بررسی ویژگی‌های روانسنجی شیوه‌نامه مصاحبه ایوانز و کرگ در دانش‌آموزان پیش‌دبستانی با و بدون آسیب زبانی

زهرا سعادتی^۱, مصصومه سلمانی^۲, بنفشه منصوری^۲, مژگان اسدی^۱, فاطمه پاک‌نظر^{۳*}

۱. گروه گفتاردرمانی، دانشکده علوم توانبخشی، دانشگاه علوم پزشکی سمنان، سمنان، ایران.

۲. مرکز تحقیقات توانبخشی عصبی عضلانی، پژوهشکده علوم اعصاب، دانشگاه علوم پزشکی سمنان، سمنان، ایران.

۳. مرکز تحقیقات عوامل اجتماعی موثر بر سلامت، دانشگاه علوم پزشکی سمنان، سمنان، ایران.

۴. گروه اپیدمیولوژی و آمار‌زیستی، دانشکده پزشکی، دانشگاه علوم پزشکی سمنان، سمنان، ایران.

Use your device to scan
and read the article online

Citation Saadati Z, Salmani M, Mansuri B, Asadi M, Paknazari F. Cross-Cultural Adaptation and Psychometric Assessment of Evans & Craig's Interview Protocol for Persian-speaking Preschool Children With and Without Language Impairment. *Archives of Rehabilitation*. 2026; 26(4):606-625. <https://doi.org/10.32598/RJ.26.4.4100.1>

doi <https://doi.org/10.32598/RJ.26.4.4100.1>

حکایه

هدف آسیب‌شناسان گفتار و زبان، نمونه زبانی خودانگیخته را به عنوان بخش اصلی ارزیابی بالینی از طریق بافت‌های بازی آزاده توصیف تصاویر، و بازگویی داستان جمع‌آوری می‌نمایند. بافت دیگر جمع‌آوری نمونه زبانی «مصاحبه» است که در سنین پیش‌دبستان کمتر مورد توجه قرار گرفته است. این پژوهش به بررسی ویژگی‌های روانسنجی شیوه‌نامه مصاحبه ایوانز و کرگ برای دانش‌آموزان سنین پیش‌دبستان فارسی‌زبان پرداخته است.

روش، بررسی به صورت تصادفی نظام‌مند، نمونه زبانی ۵۱۰ کودک فارسی‌زبان سنین پیش‌دبستان شهر سمنان ۲۰۷ کودک با آسیب زبانی، ۱۵۶ کودک بدون آسیب زبانی) تحلیل شد. کودکان با آزمون رشد زبان-۳ نسخه فارسی و شیوه‌نامه مصاحبه ایوانز و کرگ ارزیابی شدند. روانی بین‌فرهنگی، روانی ملکی، صحت تشخیصی و بررسی پاسخگویی به تغییرات این شیوه‌نامه با تکیه بر راهنمای بیتون و همکاران انجام گرفت. شاخص‌های زبانی (میانگین طول گفته، تعداد حروف ربط، نسبت جملات پیچیده، نسبت نوع به نشانه) و نمره بهره کلی علمکردهای زبانی حاصل از آزمون رشد زبان-۳ محسوبه شدند. کلیه نمرات در نرمافزار SPSS نسخه ۲۴ وارد شد. نمرات دو گروه با و بدون آسیب زبانی با آزمون‌های آماری مناسب در سطح معنی داری $0.05 < P < 0.001$ مقایسه شد.

یافته‌ها میانگین طول گفته، تعداد حروف ربط، نسبت جملات پیچیده، و نسبت نوع به نشانه در کودکان بدون آسیب زبانی (توانایی کلی زبان در آزمون رشد زبان-۳ 10.2 ± 2.5) در قیاس با کودکان با آسیب زبانی (توانایی کلی زبان در آزمون رشد زبان-۳ 7.5 ± 3.7) به ترتیب عبارت بود از 6.6 ± 1.1 در مقایل 5.2 ± 0.34 ($P = 0.003$) 12.3 ± 7.7 در مقایل 7.5 ± 0.001 ($P = 0.0001$) و 25.8 ± 7.1 در مقایل 20.4 ± 0.46 ($P = 0.0001$). به استثنای شاخص نوع به نشانه، بین سه شاخص دیگر و بهره توانایی کلی زبان در آزمون رشد زبان-۳ همبستگی معنی دار وجود داشت ($P < 0.05$), در پاسخگویی به تغییرات، نسبت نوع به نشانه تنها شاخصی بود که توانست تغییرات معنی دار در پیگیری پس از ۶ ماه نشان دهد ($P = 0.004$). در تعیین نفاط برش مشخص شد که میانگین طول گفته کمتر از 4.5 ، تعداد حروف ربط کمتر از 7 تا نسبت جملات پیچیده کمتر از 1.4 درصد و نسبت نوع به نشانه کمتر و یا بیشتر از 4.5 ٪ می‌تواند نشانگر آسیب زبانی در کودکان ۵ تا ۶ سال باشند.

نتیجه‌گیری این مطالعه نشان داد شیوه‌نامه مصاحبه ایوانز و کرگ را می‌توان برای کودکان سنین ۵ تا ۶ سال فارسی‌زبان استفاده نمود. با توجهی تأیید این شیوه‌نامه در فرایند روانسنجی و تطبیق بین‌فرهنگی، آسیب‌شناسان گفتار و زبان می‌توانند از این ابزار موجود در غربالگری و شناسایی آسیب‌های زبانی در داشت آموزان، قطعی پیش‌دبستان استفاده نمایند. این شیوه‌نامه توانست با دقت قابل قبول، تفاوت‌های نمودی و معنایی میان کودکان با آسیب زبانی و همایان بدون آسیب زبانی را آشکار سازد. همچنین، تحلیل همبستگی شاخص‌های زبانی حاصل از این شیوه‌نامه با نمرات آزمون رشد زبان-۳، نشان دهنده روانی ملکی قابل قبول آن بود. افزون بر این، نتایج این مطالعه بیانگر آن بود که این ابزار نسبت به تغییرات زبانی متعاقب مداخله حساس است و توانایی پایش پیشرفت درمانی را دارد.

کلیدواژه‌ها اختلالات رشدی زبان، کودکان پیش‌دبستانی، آسیب‌شناسی گفتار و زبان، مصاحبه، روان‌سنجی، حساسیت، ویژگی

تاریخ دریافت: ۱۴۰۴ مرداد ۱۴

تاریخ پذیرش: ۱۴۰۴ آذر ۱۵

تاریخ انتشار: ۱۴۰۴ دی ۱۱

* نویسنده مسئول:

دکتر مصصومه سلمانی

نشانی: سمنان، دانشگاه علوم پزشکی سمنان، پژوهشکده علوم اعصاب، مرکز تحقیقات توانبخشی عصبی عضلانی.

تلفن: ۰۹۱۲ ۸۳۱۰ ۹۲۴ +۹۸

ایمیل: salmani_masoome@yahoo.com

طیف کاملاً ساختارمند و گفتار آزاد فراهم می‌کند و در عین حال، امکان استخراج داده‌های پایا و قابل مقایسه را به پژوهشگر می‌دهد [۱۷، ۱۵]. شیوه‌نامه مصاحبه‌ای ایوانز و کرگ (۱۹۹۲) یکی از شناخته شده‌ترین ابزارها در این زمینه است که در قالب گفت‌و‌گویی ۱۵ دقیقه‌ای با محوریت موضوعات «خانواده»، «مدرسه» و «فعالیت‌های اوقات فراغت» طراحی شده است [۱۸]. مطالعات نشان داده‌اند کودکان در این قالب نه تنها تعداد بیشتری اظهار نظر نسبت به موقعیت‌های بازی آزاد تولید می‌کنند، بلکه ساختارهای نحوی و معنایی پیچیده‌تری نیز به کار می‌برند [۱۴، ۱۹، ۱۷]. همچنین، داده‌های حاصل از این مصاحبه از پایداری بیشتری در مقایسه با بازی آزاد برخوردار بوده و کمتر تحت تاثیر عوامل بیرونی و خلقوخوی لحظه‌ای کودک قرار می‌گیرند [۲۰].

علاوه بر این، پژوهش نلسون (۱۹۹۸) گزارش کرد که افزودن پرسش‌های هدایت‌گر به این پروتکل می‌تواند به تولید پاسخ‌های عاطفی‌تر و غنی‌تر منجر شود [۲۱]. مرور شواهد موجود نشان می‌دهد که در تمامی پژوهش‌هایی که از نمونه‌های زبانی کودکان استفاده شده، شاخص‌های صرفی (مانند وندها)، نحوی (مانند میانگین طول جمله، نسبت جملات پیچیده به ساده و تعداد حروف ربط) و معنایی (مانند نسبت نوع به نشانه) به عنوان معیارهایی با قدرت بالای تمایز کودکان با و بدون آسیب زبانی معرفی شده‌اند [۲۴-۲۲].

با وجود این پیشرفت‌ها، همچنان کاستی‌هایی در حوزه پژوهش‌های مربوط به ارزیابی زبانی از طریق مصاحبه وجود دارد. نخست، بخش عمده مطالعات انجام‌شده محدود به جوامع انگلیسی‌زبان و جمعیت‌های نسبتاً همگن از نظر زبان، فرهنگ و طبقه اجتماعی است [۲۵]. دوم، ابزارهای رایج در زبان فارسی، همچون آزمون رشد زبان-۳^۱، به روز نبوده و در زمینه تحلیل مکالمه‌های طبیعی کارایی کافی ندارند [۲۶]. در این شرایط، نیاز به ابزاری بومی، کارآمد و سریع برای شناسایی کودکان در معرض اختلال زبانی در ایران کاملاً محسوس است. با توجه به شیوه بالای اختلالات زبانی در کشور [۲۷] و پیامدهای منفی آن بر عملکرد تحصیلی و تعاملات خانوادگی [۲۹، ۲۸]، بررسی علمی و روان‌سنجی شیوه‌نامه مصاحبه‌ای ایوانز و کرگ در جامعه فارسی‌زبان، به ویژه در گروه سنی پیش‌دبستان، ضروری است. همچنین مطالعات قبلی نشان داده‌اند که ابزارهای انکارناپذیر دارد. همچنان مطالعات زبانی در گروه سنی پیش‌دبستان، ضروری است که ابزارهای زبان-محور برای فارسی‌زبانان باید از طریق فرایندهای استاندارد ترجمه، بومی‌سازی و آزمون‌های روان‌سنجی بازطراحی شوند [۳۱، ۳۰]. پژوهش حاضر با هدف بررسی ویژگی‌های روان‌سنجی نسخه فارسی این شیوه‌نامه طراحی شده است تا بستری برای تشخیص بهنگام، طراحی مداخلات هدفمند و تولید داده‌های بومی معتبر در حوزه زبان کودکان فراهم آورد.

4. Test of Language Development—Primary: Third Edition (TOLD-P:3)

مقدمه

رشد زبان یکی از مهم‌ترین شاخص‌های تحولی در سال‌های آغازین زندگی کودک به شمار می‌رود [۱]. مهارت‌های زبانی نه تنها اساس توانایی‌های ارتباطی را شکل می‌دهند، بلکه پیش‌نیاز یادگیری در محیط آموزشی، رشد شناختی و برقراری روابط اجتماعی نیز محسوب می‌شوند [۲]. با این حال، گروه قابل توجهی از کودکان در فرآیند زبان دچار تأخیر یا اختلال هستند؛ بدون آن که آسیب شناوایی، هوشی یا عصی زمینه‌ای داشته باشند. این گروه که عمدتاً با عنوان اختلال زبان رشدی^۱ یا آسیب زبانی خاص^۲ شناخته می‌شوند، حدود ۷ تا ۱۰ درصد از کودکان پیش‌دبستانی را تشکیل می‌دهند [۳]. تشخیص دیرهنگام یا نادرست این اختلال می‌تواند پیامدهای بلندمدتی در حوزه‌های تحصیلی، عاطفی و اجتماعی به دنبال داشته باشد؛ از جمله افت تحصیلی، انزوا، کاهش اعتماد به نفس و افزایش احتمال بروز اختلالات روانی در بزرگسالی [۴، ۵]. بنابراین، ارزیابی دقیق و بهنگام مهارت‌های زبانی در کودکان نقشی اساسی در مداخله بهنگام و بهبود کیفیت زندگی آنان دارد [۶].

برای سنجش مهارت‌های زبانی کودکان، متخصصان گفتاردرمانی از مجموعه‌ای از روش‌ها استفاده می‌کنند که به طور کلی در دو دسته ساختارمند و غیرساختارمند قرار می‌گیرند. روش‌های غیرساختارمند مانند نمونه‌گیری زبان در بازی آزاد، توصیف تصویر و بازگویی داستان است که به عنوان روش‌هایی با اعتبار تشخیصی بالا شناخته شده‌اند [۷، ۸]. این رویکردها رفتارهای طبیعی زبانی کودک را در محیط‌های مشابه زندگی روزمره آشکار می‌سازند. برای مثال، پژوهش وو^۲ (۲۰۲۴) نشان داد محیط‌های بازی تعامل محور، علاوه بر افزایش کیفیت ارتباطی، اضطراب کودک را کاهش می‌دهند و به تعاملات غنی‌تری منجر می‌شوند [۹]. با وجود این مزایا، روش‌های غیرساختارمند معمولاً با محدودیت‌هایی همچون نیاز به چند جلسه نمونه‌گیری، وابستگی به مهارت درمانگر در مدیریت تعامل و فقدان شیوه‌نامه استاندارد همراه هستند [۱۰]. در مقابل، روش‌های ساختارمند مانند آزمون‌های رسمی، تکالیف تقلید و ارزیابی‌های مبتنی بر تصویر از نظر زمان، مقایسه‌پذیری و دقت در سنجش برخی ابعاد زبان (مانند نحو و واژگان) سودمندتر هستند [۱۱، ۱۲]. با این حال، این ابزارها در بازنمایی عملکرد زبانی کودک در موقعیت‌های طبیعی گفت‌و‌گو محدود عمل می‌کنند [۱۳-۱۶].

در سال‌های اخیر، تلاش‌هایی برای بهره‌گیری هم‌زمان از مزایای روش‌های ساختارمند و طبیعی در نمونه‌گیری زبانی صورت گرفته است. یکی از رویکردهای نوین در این حوزه، مصاحبه‌های بالینی نیمه‌ساختارمند است که موقعیتی میان دو

1. Developmental Language Disorder or DLD
2. Specific Language Impairment or SLD
3. Hsuan-Pei Wu

روش

نوع پژوهش

پژوهش حاضر از نوع روانسنجی ابزار و توصیفی مقطعی است که به عنوان بخشی از یک مطالعه گستردگی انجام شده است.

جامعه و نمونه پژوهش

جامعه پژوهش شامل تمامی کودکان مقطع پیش دبستانی دوم بود که در سال تحصیلی ۱۴۰۱-۱۴۰۲ در مدارس غیرانتفاعی شهر سمنان ثبت نام کرده بودند (تعداد کل ۶۲۰ نفر). براساس جدول مورگان، حجم نمونه موردنیاز برای جامعه ای با این اندازه ۲۳۴ نفر برآورد شد. با این حال، از آنجاکه مدرسه به عنوان واحد تصادفی سازی و نمونه گیری در نظر گرفته شد، تعداد کودکان وارد شده به مطالعه بیشتر از مقدار محسوب شده بود و در نهایت ۳۴۰ کودک مورد ارزیابی قرار گرفتند. هدف از این ارزیابی، شناسایی و تفکیک کودکان با آسیب زبانی و کودکان بدون آسیب زبانی بود. برای کاهش اثرات عوامل اقتصادی-اجتماعی، جلوگیری از سوگیری انتخاب و محافظت در برابر سوگیری تصادفی، از روش تصادفی سازی خوشای استفاده شد. معیارهای ورود به مطالعه شامل تکزبانه بودن به زبان فارسی و عدم دریافت خدمات تخصصی یا مشاوره در غربالگری پیش دبستانی (شنوایی، بینایی، گفتار و زبان و شناخت) بود.

غربالگری اولیه با استفاده از آزمون رشد زبان ۳-۳ انجام گرفت. از میان آنها، ۶۰ کودک (۲۵ دختر و ۳۵ پسر) به عنوان گروه دارای آسیب زبانی شناسایی شدند. براساس همان جدول مورگان حداقل ۵۲ کودک باید به عنوان نمونه مطالعه قرار می گرفتند. از ۲۸۰ کودک بدون آسیب زبانی در غربال با آزمون رشد زبان ۳-۳، طبق جدول مورگان بایستی ۱۶۲ نمونه زبانی مورد بررسی قرار می گرفت. همچنین از میان کودکان با رشد زبانی طبیعی، ۱۶۲ نمونه با روش نمونه گیری تصادفی نظاممند و براساس جدول مورگان انتخاب شدند تا گروه مقایسه تشکیل شود. حداقل به پنج دلیل تعداد نمونه های بدون آسیب زبانی بیش از تعداد نمونه های با آسیب زبانی در نظر گرفته شد: ۱. نمایش بهتر تنوع طبیعی (داشتن شاخص های توصیفی مرکز و پراکنده قابل اعتمادتر). ۲. قابلیت تعمیم نتایج، ۳. افزایش قدرت آماری مطالعه، ۴. دقیق تر شدن محاسبات حساسیت و ویژگی و ۵. تعیین نقطه برش و محاسبه بازه طبیعی.

معیار ورود نمونه های زبانی شامل موارد زیر بود: ۱. نمونه های زبانی واضح و قابل شنیدن نسخه نویسی شد و حداقل ۲ دقیقه تعامل مؤثر با آزمونگر داشت. چنانچه نمونه زبانی از کودکی وجود داشت اما کودک در آزمون رشد زبان ۳-۳ همکاری نکرده بود، نمونه زبانی حذف می شد.

ابزار گردآوری داده ها

آزمون رشد زبان-۳ فارسی

این آزمون یکی از معتبرترین و جامع ترین آزمون های برای ارزیابی رشد زبان کودکان فارسی زبان است که بر اساس ۶ خرده آزمون اصلی (وازگان تصویری، ربطی و شفاهی، درک دستوری، تقلید جمله و تکمیل دستوری) و ۳ خرده آزمون فرعی تکمیلی (تمایز کلمه، تحلیل واجی و بیان کلمه) انجام می شود. آزمون رشد زبان-۳ فارسی دارای اعتبار بین ۰/۴-۰/۷ است، اعتبار سازه آن از طریق سن با همبستگی بین ۰/۲۸ و ۰/۶۰ ارزیابی شد. آزمون رشد زبان-۳ فارسی می تواند به طور قابل توجهی بین کودکان دارای ناتوانی های یادگیری، تأخیر زبانی، ناتوانی ذهنی و اختلالات نقص توجه/بیش فعالی تمايز قائل شود.

شش خرده آزمون اصلی همبستگی داخلی معنی داری بین ۰/۴۴ و ۰/۷۹ (میانگین ۰/۵۵) داشتند. در تحلیل عاملی همه خرده آزمون های اصلی، توانایی کلی زبان را که به عنوان اولین نمره ترکیبی ارائه شده بود، مناسب ارزیابی کردند. قدرت تمایز شش خرده آزمون اصلی بین ۰/۹۰ و ۰/۹۷ (علی) به دست آمد. با ترکیب نمرات استاندارد از خرده آزمون های اصلی می توان شش بهره مختلف را حساب نمود. در این مطالعه برای غربال کودک با آسیب زبانی و بدون آسیب زبانی از بهره های استفاده شد که از ترکیب شش خرده آزمون اصلی به دست می آید و با عنوان «توانایی کلی زبان^۴» مطرح می شود. سایر بهره های از آن رو معیار غربالگری قرار نگرفتند که از ترکیب تنها دو خرده آزمون به دست می آمدند و برای یک نظام خاص مثل مهارت گوش دادن یا مهارت های دستوری کودکان استفاده می شوند. براساس دستورالعمل آزمون، یک انحراف معیار زیر حد میانگین معادل آسیب زبانی در نظر گرفته شد [۲۶]. نتایج آزمون در یک برگه مخصوص برای هر فرد ثبت شد.

شیوه نامه مصاحبه ایوانز و کرگ

این شیوه نامه به صورت نیمه ساختار یافته به منظور نمونه گیری زبان دانش آموزان ۹-۸ ساله طراحی شده و شامل سه بخش ۵ دقیقه ای با محورهای «خانواده»، «مدرسه» و «فعالیت های خارج از مدرسه» بود. این شیوه نامه با هدف تسهیل تولید گفتار خودانگیخته کودک در یک بافت تعاملی طراحی شده و بر استفاده از پرسش های باز، تعاملات طبیعی و فرصت های پاسخ گویی انعطاف پذیر تأکید دارد تا نمونه های زبانی معتبر و قابل تحلیل از نظر شاخص های نحوی، معنایی و گفتگویی جمع آوری شود. طراحی کوتاه مدت و نیمه ساختار یافته آن، امکان بهره برداری همزمان در محیط های بالینی و پژوهشی با محدودیت زمانی را فراهم می کند. نسخه اصلی این شیوه نامه که در سال ۱۹۹۲

بهره گرفته شد. بهمنظور تعیین نقطه برش بهینه برای هر شاخص، از شاخص یودن^{۱۰} استفاده گردید تا ترکیب مناسبی از حساسیت^{۱۱} و ویژگی^{۱۲} حاصل شود. برای سنجش حساسیت و ویژگی، براساس ماتریس طبقه‌بندی^{۱۳} برای هر شاخص، مقادیر زیر محاسبه شد:

مثبت واقعی^{۱۴}: شناسایی صحیح کودک دارای آسیب؛

مثبت کاذب^{۱۵}: شناسایی اشتباه کودک سالم به عنوان آسیب‌دیده؛

منفی واقعی^{۱۶}: شناسایی صحیح کودک سالم؛

منفی کاذب^{۱۷}: عدم شناسایی کودک آسیب‌دیده.

برای اساس، شاخص‌های زیر (فملول شماره ۱) بدست آمدند:

$$\text{حساسیت} = \frac{TP}{TP + FN}$$

$$1. \quad \text{ویژگی} = \frac{TN}{TN + FP}$$

$$\text{دقت} = \frac{TP + TN}{TP + TN + FP + FN}$$

Youden's Index=Sensitivity+Specificity-1

باتوجه به اینکه در این مطالعه، از منحنی مشخصه عملکرد گیرنده^{۱۸} برای بررسی توانایی شاخص‌های مختلف در افتراق بین کودکان با و بدون آسیب زبانی استفاده شد، یکی از مهم‌ترین شاخص‌هایی که از این تحلیل به دست می‌آید، سطح زیر منحنی^{۱۹} است. این شاخص نشان می‌دهد که یک متغیر (مثلاً میانگین طول گفته یا نسبت جملات پیچیده) تا چه اندازه‌ی توافقی بین دو گروه (کودکان سالم و کودکان دارای آسیب زبانی) می‌تواند در اینجا، شاخص‌هایی که مقدار سطح زیر منحنی تمایز قائل شود. در اینجا، شاخص‌هایی که افتراقی مناسب در آن‌ها بالاتر از ۷۰/۰ بود، به عنوان شاخص‌های افتراقی مناسب در نظر گرفته شدند؛ یعنی این شاخص‌ها توانایی نسبتاً خوبی در تشخیص و تمایز بین کودکان دارای آسیب زبانی و کودکان سالم داشتند. روابی ملاکی شیوه‌نامه یعنی میزان همبستگی شاخص‌های زبانی به دست آمده از مصاحبه با بهره توانایی کلی زبان منتج از آزمون استاندارد رشد زبان-۳- با استفاده از ضریب همبستگی اسپیرمن بررسی شد. برای بررسی قابلیت پاسخ‌گویی

10. Youden's Index

11. Sensitivity

12. Specificity

13. Confusion Matrix

14. True Positive (TP)

15. False Positive (FP)

16. True Negative (TN)

17. False Negative (FN)

18. Receiver Operating Characteristic Curve (ROC Curve)

19. Area Under the Curve (AUC)

طراحی شد. ویژگی‌های روان‌سنجی این شیوه‌نامه از جمله روایی محتوایی و سازه‌ای و نیز پایایی آزمون‌سازآزمون و پایایی بین ارزیاب‌ها تأیید شده است. پایایی بین ارزیابان با کدگذاری مجدد ۱۰ درصد از نمونه‌ها توسط ارزیاب دوم و محاسبه ضریب توافق بررسی شد که در تمام شاخص‌ها بیش از ۸۵ درصد بود.

روش اجرا

برای بررسی روایی محتوایی، پنج متخصص آسیب‌شناسی گفتار و زبان به ارزیابی گویه‌ها پرداختند و شاخص‌های کمی نسبت روایی محتوایی^۱ و شاخص روایی محتوایی^۷ محاسبه شد (همگی بالاتر از حد مطلوب). روایی سازه‌ای با مقایسه ویژگی‌های نحوی و معنایی گفتار کودک در بافت مصاحبه با بافت بازی آزاد بررسی شد. روایی بین فرهنگی نیز از طریق بررسی انطباق محتوای شیوه‌نامه با فرهنگ فارسی‌زبانان توسط متخصصان انجام شد.

مصاحبه‌ها توسط آسیب‌شناس گفتار و زبان در محیط مدرسه و در فضایی که تا حد امکان آرام و مناسب بود انجام گرفت. فایل‌های صوتی جلسات ضبط و سپس براساس قواعد واحد ارتباطی^۸ و نسخه‌نویسی پی‌لارسپ^۹ نسخه‌نویسی شدند. تحلیل نمونه‌های زبانی توسط نگارنده اول این مقاله (دانشجوی ارشد گفتاردرمانی و با آموزش مستقیم نگارنده پی‌لارسپ) و براساس شاخص‌های ساختاری (نحوی و معنایی) و گفتمانی انجام گرفت. در بخش ساختارهای نحوی متغیرهایی نظریه‌گذاری میانگین طول گفته براساس تعداد واژه به واحد ارتباطی، نسبت جملات پیچیده به ساده، و تعداد حروف ربط؛ در بخش مشخصات گفتمانی عواملی نسبت نوع به نشانه، در بخش مشخصات گفتمانی عواملی چون رفتارهای خودابازی (درخواست کلامی، شفاف‌سازی و اظهارات) و پاسخگویی کلامی و درنهایت برای روانی کلام میزان قطع گفتار در ریزمتغيرهایی چون تعداد مکث پر، مکث خالی، بازنگری و تکرار مورد بررسی قرار گرفت. برای شریک ارتباطی هم متغیرهایی چون میانگین تعداد واحد ارتباطی، طول واحد ارتباطی، تغییر موضوع و نوبت‌گیری ثبت و مقایسه شد.

تحلیل داده‌ها

تحلیل داده‌ها را در نرم‌افزار SPSS نسخه ۲۴ انجام شد. ابتدا با استفاده از آمار توصیفی (میانگین و انحراف‌معیار)، نمای کلی داده‌ها ارائه شد. در مرحله بعد، برای بررسی دقت تشخیصی شاخص‌های زبانی در تمایز بین کودکان دارای آسیب زبانی و کودکان سالم، از تحلیل منحنی مشخصه عملکرد گیرنده (ROC)

6. Content Validity Ratio (CVR)

7. Content Validity Index (CVI)

8. Communication unit (C-unit)

Language Assessment^{۱۰} P-LARSP^۹ Remediation and Screening Procedure^{۱۱} برای تحلیل ساختارهای زبانی کودکان فارسی‌زبان.

داد نسبت جملات پیچیده بالاترین ویژگی (۷۸/۰) و تعداد حروف ربط بالاترین حساسیت (۷۳/۰) را ارائه می‌دهند، در حالی که نسبت نوع به نشانه عملکرد ضعیفتری داشت و به تهایی برای تشخیص قابل اتکانبود.

این نتایج نشان می‌دهد شاخص‌های نحوی و گفتمانی استخراج شده از شیوه‌نامه مصاحبه‌ای ایوانز و کرگ قابلیت شناسایی کودکان با اختلال زبانی را دارند و ترکیب چند شاخص، دقت تشخیص را افزایش می‌دهد، به ویژه زمانی که از نقاط برش بهینه و تحلیل ماتریکس آشفتگی بهره گرفته شود.

تحلیل دقت تشخیصی شاخص‌های زبانی براساس تحلیل منحنی مشخصه عملکرد گیرنده

شاخص‌های نحوی

در میان شاخص‌های نحوی، «تعداد حروف ربط» با حساسیت ۹۱/۷ درصد و ویژگی ۵۸/۳ درصد، بالاترین توان را در شناسایی کودکان دارای اختلال زبانی نشان داد، اما این شاخص برای اهداف شناسایی اولیه بسیار مناسب ارزیابی می‌شود. «نسبت جملات پیچیده» با ویژگی ۹۳/۸ درصد بهترین شاخص برای تأیید سلامت زبانی کودکان بود؛ با این حال، حساسیت پایین آن (۴۷/۹ درصد) نشان‌دهنده ناتوانی نسبی در شناسایی کودکان می‌باشد. شاخص «میانگین طول گفته» حساسیت و ویژگی متعادلی در محدوده ۷۰ تا ۷۵ درصد نشان داد و با داشتن سطح زیمنحنی بین ۷۵/۰ تا ۸۲/۰، ابزار قابل اعتمادی برای تمایز کودکان سالم از دارای اختلال محسوب می‌شود.

شاخص‌های معنایی

در حوزه معنایی، نتایج نشان می‌دهد که بهترین نقاط برش برای شاخص نسبت «نسبت نوع به نشانه» در بازه ۰/۴۲ تا ۰/۴۵ قرار دارند. این بازه بیشترین مقدار شاخص یودن (۰/۳۸) را فراهم می‌آورد که نشانگر تعادل مطلوب بین نشانه کودک برابر است. از منظر بالینی، اگر مقدار نسبت نوع به نشانه کودک برابر یا کمتر از ۰/۴۲ تا ۰/۴۵ باشد، می‌توان احتمال بالاتری برای وجود اختلال زبانی در نظر گرفت؛ در حالی که مقداری بالاتر نشانگر احتمال بیشتر رشد زبانی طبیعی هستند.

جمع‌بندی شاخص‌ها

جدول شماره ۳ خلاصه‌ای از شاخص‌های اصلی همراه با مقدار حساسیت، ویژگی، سطح زیر منحنی و تفسیر بالینی آن‌ها را ارائه می‌دهد.

درنهایت به عنوان یک آسیب‌شناس گفتار و زبان برای کار در بالین، به اعداد و ارقامی ثابت و قابل استناد نیاز داریم. **جدول شماره ۴** نقاط برش بهینه به دست آمده برای هر شاخص زبانی، همراه با

به تغییرات، با استفاده از آزمون زوجی ویلکاکسون شاخص‌های نحوی و معنایی با فاصله ۶ ماه مورد بررسی قرار گرفت تا میزان حساسیت شاخص‌ها به بهبود یا افت عملکرد زبانی مشخص شود. دقت کلی ^{۲۰} شاخص‌های نحوی و معنایی در طبقه‌بندی صحیح کودکان در دو گروه با آسیب زبانی و بدون آسیب زبانی نیز مورد ارزیابی قرار گرفت.

یافته‌ها

متخصصان گفتاردرمانی نسخه فارسی شیوه‌نامه مصاحبه را روا، قابل درک و قابل استفاده و کاملاً ضروری و مرتبط با اهداف نمونه‌گیری زبانی دانستند. پس از اعمال معیارهای ورود و خروج از مطالعه، ۱۸ نمونه زبانی حذف شدند. ۹ کودک با آسیب زبانی به هیچ وجه در تعامل با ارزیاب قبل از ارزیابی صحبت نکردند، بنابراین تعداد نمونه‌های زبانی کوکان دارای آسیب زبانی به ۵۱ کاهش یافت. شش نمونه زبانی از دانش‌آموزان بدون آسیب زبانی نیز به دلیل امتناع از پاسخگویی به (تعداد نمونه‌های زبانی باقیمانده از کودکان بدون آسیب زبانی به ۱۵۶ نمونه کاهش یافت). توزیع جنسیتی و نمره توانایی کلی زبان در **جدول شماره ۱** آورده شده است. اختلاف بین دو گروه در میانگین نمره برهه توانایی کلی زبان در آزمون من ویتنی معنی دار شد ($P < 0.001$). آسیب زبانی کلی زبان در آزمون من ویتنی معنی دار شد ($P < 0.001$). آسیب زبانی 0.5 ± 0.3 و میانگین سن گروه بدون آسیب زبانی 0.4 ± 0.3 ، و اختلاف بین دو گروه معنی دار نبود ($P = 0.05$).

با توجه به طول مدت متفاوت مصاحبه گروه با آسیب زبانی (۶ دقیقه) و بدون آسیب زبانی (۹ دقیقه) استفاده از دو روش قطع زمان (۱۰ دقیقه تعامل) و قطع گفته (۱۰۰ گفته قابل تجزیه) مطلوب به نظر نمی‌رسید. به همین خاطر تنها شاخص‌های نسبتی در متن مقاله قرار داده شدند. **جدول شماره ۲** میانگین و انحراف‌معیار و سطح معنی داری حاصل از قیاس دو گروه را نشان می‌دهد.

همبستگی شاخص‌های نحوی و معنایی با نمره کل آزمون رشد زبان-۳ نشان داد بالاترین همبستگی مربوط به تعداد حروف ربط ($P = 0.001$) و میانگین طول گفته ($P = 0.005$) است، در حالی که نسبت نوع به نشانه همبستگی معنی داری را نشان نداد.

تحلیل ROC، نقاط برش بهینه برای تمایز کودکان با اختلال و سالم را مشخص کرد؛ میانگین طول گفته 4.05 ± 4.40 ، نسبت جملات پیچیده 14.29 ± 14.29 درصد، تعداد حروف ربط 8.7 ± 8.7 و نسبت نوع به نشانه 0.42 ± 0.45 است. ترتیب پیشنهادی در فرآیند غربالگری شامل میانگین طول گفته، نسبت جملات پیچیده، تعداد حروف ربط و نسبت نوع به نشانه بود. تحلیل ماتریکس آشفتگی نشان

20. Overall Accuracy

جدول ۱. توزیع جنسیتی و میانگین بهره‌ی توانایی کلی زبان در گروه‌های مورد مطالعه

مجموع	با آسیب زبانی (n=۵۲)		بدون آسیب زبانی (n=۱۵۶)		گروه‌های مورد مطالعه
	توانایی کلی زبان	تعداد (درصد)	توانایی کلی زبان	تعداد (درصد)	
	میانگین \pm انحراف معیار		میانگین \pm انحراف معیار		
۱۲۳	۷۶/۰۰ \pm ۵/۱۰	۳۰ (۵۸/۱)	۱۰۱/۴۸ \pm ۹/۸۴	۹۳ (۵۹/۶)	پسر
۸۴	۷۷/۸۶ \pm ۸/۰۶	۲۱ (۴۱/۲)	۱۰۳/۳۸ \pm ۱۰/۰۱	۶۳ (۴۰/۴)	دختر
۲۰۷	۷۵/۰۰ \pm ۶/۶۶	۵۱ (۱۰۰)	۱۰۲/۲۵ \pm ۹/۹۲	۱۵۶ (۱۰۰)	مجموع

توانبخننی

ش. نسخه فارسی شیوه‌نامه با تأیید متخصصان گفتار و زبان برای استفاده در جامعه کودکان فارسی زبان سنین ۵ تا ۶ سال مورد تأیید قرار گرفت. زمان موردنیاز برای اجرای این مصاحبه در کودکان ۶-۵ سال کمتر از ۱۰ دقیقه برای هر دو گروه با و بدون آسیب زبانی محاسبه گردید. از آنجایی که تفاوتی معنی‌دار در مدت زمان سپری شده برای مصاحبه با کودک با آسیب زبانی و بدون آسیب زبانی وجود داشت، از شاخص‌های نسبتی جهت بررسی حساسیت و ویژگی، تعیین نقطه برش، و روایی ملائکی این شیوه‌نامه استفاده شد. نتایج ارزشمند و قابل اتکا چه در بالین و چه در پژوهش بودند.

شاخص میانگین طول گفته به صورت معنی‌دار در کودکانی که در آزمون استاندارد بدون آسیب زبانی بودند در مقایسه با کودکان با آسیب زبانی بالاتر بود. این شاخص توانست تعداد زیادی از کودکان دارای آسیب زبانی را به درستی شناسایی کند، اما در تمایزگذاری کامل با کودکان سالم محدودیت‌هایی دارد. این یافته با مطالعات ایوانز و کرگ [۳۲] و نیز داده‌های زبان پژوهی بومی کاظمی و همکاران [۳۳] همخوانی دارد و تأیید می‌کند که کاهش طول گفته در کودکان دارای اختلال زبان از نشانه‌های پایدار و بالینی آسیب زبانی است. بالین حال، میانگین طول گفته به تنهایی نمی‌تواند برای تأیید سلامت زبانی کافی باشد، چراکه برخی کودکان با رشد زبان طبیعی نیز ممکن است به دلایل فردی یا محیطی، طول گفته نسبتاً کوتاهی داشته باشند، ازین‌رو بررسی سایر متغیرها که در ادامه مورد بحث قرار می‌گیرند برای رسیدن به صحت تشخیصی ضروری به نظر می‌رسد.

کاربرد و اولویت استفاده از آن‌ها را نشان می‌دهد. **جدول شماره ۴** نمای کلی از ترتیب بررسی شاخص‌ها در فرآیند غربالگری و تشخیص اختلال زبانی ارائه می‌دهد. ابتدا از شاخص میانگین طول گفته برای شناسایی اولیه استفاده می‌شود و سپس براساس نتایج مرزی، شاخص‌های نحوی و واژگانی بررسی می‌شوند. این توالی منطقی موجب افزایش دقت تشخیص در مقایسه با اتکا به یک شاخص منفرد می‌گردد.

ارزیابی دقت شاخص‌ها

جهت ارزیابی دقت طبقه‌بندی هر شاخص، از ماتریکس آشفتگی استفاده شد. این ماتریکس نشان می‌دهد که هر شاخص چه تعداد از کودکان را به درستی یا به اشتباه در هر گروه تشخیص داده است. **جدول شماره ۵** نتایج حاصل از دقت هر شاخص در ماتریکس آشفتگی را نشان می‌دهد. تحلیل **جدول شماره ۵** نشان می‌دهد شاخص نسبت جملات پیچیده، بالاترین ویژگی (۸۰/۷۸) را دارد و بنابراین برای تأیید سلامت مناسب‌تر است. در مقابل، تعداد حروف ربط بالاترین حساسیت (۰۰/۷۳) را ارائه می‌دهد و برای غربالگری اولیه مؤثرتر است. شاخص نسبت نوع به نشانه ضعیفترین عملکرد را هم در حساسیت و هم در ویژگی نشان می‌دهد و به تنهایی برای تشخیص قابل اتکانیست.

بحث

مطالعه حاضر با هدف بررسی ویژگی‌های روانسنجی نسخه فارسی شیوه‌نامه مصاحبه‌ای ایوانز و کرگ در شناسایی و غربالگری کودکان با آسیب زبانی سنین ۵ تا ۶ سال انجام

جدول ۲. ویژگی‌های زبانی کودکان بر اساس شیوه‌نامه مصاحبه‌ای ایوانز و کرگ

سطح معنی‌داری	میانگین \pm انحراف معیار		نسبت نوع به نشانه	میانگین \pm انحراف معیار		نسبت جملات پیچیده به جملات ساده	سطح معنی‌داری	میانگین \pm انحراف معیار		نحوه ربط	سطح معنی‌داری	میانگین \pm انحراف معیار		(تعداد واژه/تعداد واحد ارتباطی)	گروه‌های مورد مطالعه
	معنی‌داری	معنی‌داری		معنی‌داری	معنی‌داری			معنی‌داری	معنی‌داری			معنی‌داری	معنی‌داری		
۰/۳۰	۰/۴۵ \pm ۰/۱۳	۰/۴۴ \pm ۰/۱۲	۰/۶۳۲	۲۵/۸۷ \pm ۱۷/۲۰	۲۵/۷۱ \pm ۱۳/۵۹	۰/۰۰۱	۷/۵۳ \pm ۹/۲۹	۱۳/۳۷ \pm ۱/۱۳	۰/۰۳۴	۵/۲۵ \pm ۲/۵۱	۶/۱۱ \pm ۲/۷۸	۰/۰۳۴	۰/۰۳۴	کودکان با آسیب زبانی کودکان بدون آسیب زبانی	

توانبخننی

جدول ۳. مقایسه عملکرد تشخیصی شاخص‌های منتخب زبانی بر اساس تحلیل منحنی مشخصه عملکرد گیرنده

شاخص	حساسیت (%)	ویژگی (%)	سطح زیر منحنی	تفسیر بالینی
تعداد حروف ربط	۹۱/۷	۵۸/۳	۰/۷۹۵	مناسب برای غربالگری اولیه
نسبت جملات پیچیده	۴۷/۹	۹۳/۸	۰/۷۷۰	مناسب برای تأیید سلامت
میانگین طول گفته	۷۰/۸	۷۵/۰	۰/۷۹۱	شاخص معادل و قابل اعتماد
نسبت نوع به نشانه	۷۲/۹	۷۰/۸	۰/۷۵۸	دقت متوسط، مکمل شاخص‌های دیگر

توابختنی

حروف ربط نشان‌دهنده رشد نحوی و گفتمانی پیش‌رفته است، کاهش تعداد آن‌ها می‌تواند نشانه هشدار‌دهنده‌ای از محدودیت زبانی باشد.

در حالی که شاخص‌های نحوی قدرت تمایز تقریباً خوبی داشتند، تنها شاخص معنایی موردنظری یعنی نسبت نوع به نشانه، در تحلیل منحنی مشخصه عملکرد، قدرت تشخیصی پایینی نشان داد. حتی حساسیت و ویژگی آن نیز در سطح متوسط یا پایین قرار دارند. این یافته با مطالعاتی که به انتقاد از نسبت نوع به نشانه به عنوان شاخصی وابسته به حجم نمونه زبانی پرداخته‌اند، همخوانی دارد. به‌ویژه در نمونه‌های زبانی کوتاه که غالباً در موقعیت‌های بالینی رایج هستند، این شاخص نمی‌تواند برای شناسایی و یا غربال کودکان با و بدون آسیب زبانی بدون شاخص‌های مکمل دیگر به کار گرفته شود.

ترکیب چند شاخص دارای حساسیت بالا مانند تعداد حروف ربط و میانگین طول گفته با شاخص‌های دارای ویژگی بالا (مانند نسبت جملات پیچیده) توانست دقت طبقه‌بندی بهتری ایجاد

نسبت جملات پیچیده یافته قابل توجهی بود که میانگین عددی آن بین دو گروه تفاوت معنی‌دار نداشت اما در محاسبات حساسیت و ویژگی، این شاخص، ویژگی بالایی از خود نشان داد؛ به این معنا که توانست کودکان با رشد زبان طبیعی را به درستی شناسایی کند، اما حساسیت آن پایین بود و بسیاری از کودکان دارای آسیب زبانی را شناسایی نکرد. این وضعیت باعث می‌شود نسبت جملات پیچیده بیشتر برای تأیید سلامت زبانی مناسب باشد تا غربالگری اختلال. یافته‌های حاضر با نتایج مشابهی در ادبیات پژوهش پارادیز [۳۴] و تامیسون [۳۵] مطابقت دارد.

شاخص نحوی دیگری که در این مطالعه نتایج قابل انتکایی داشت تعداد حروف ربط بود. این شاخص از جمله دقیق‌ترین شاخص‌های نحوی در تشخیص کودکان دارای آسیب زبانی بود و حساسیت بسیار بالایی داشت، در حالی که ویژگی آن متوسط بود. این یعنی ابزار در شناسایی کودکان دارای اختلال عملکرد بالایی داشت اما ممکن است کودکان سالمی را نیز اشتباها در گروه دارای آسیب طبقه‌بندی کند. این ویژگی، آن را به شاخصی ایدئال برای غربالگری اولیه تبدیل می‌کند. با توجه به این که کاربرد

جدول ۴. نقاط برش پیشنهادی

اولویت	شاخص	نقطه برش پیشنهادی	توضیح
۱	میانگین طول گفته	۴/۵	میانگین طول جمله کودکان، به عنوان شاخص اصلی پیچیدگی ساختار جمله در مورد نرخ جملات ساده و پیچیده، کودکان با مساوی یا کمتر از ۱۴ کمتر از ۱۴ اختلال بیشتری دارند.
۲	نسبت جملات پیچیده	۱۴	تعداد کلمات ربط، کمتر یا مساوی ۷ نشان‌دهنده احتمال اختلال است.
۳	تعداد حروف ربط	۷	نسبت نوع واژگان؛ مقادیر کمتر از ۴۵٪ احتمال اختلال را نشان می‌دهند، مقادیر بین ۴۵٪ تا ۶۵٪ بازه نرمال است
۴	نسبت نوع به نشانه	۰/۰ تا ۰/۶۵	بازه نرمال: ۰/۰ تا ۰/۴۵

توابختنی

جدول ۵. طبقه‌بندی شاخص‌ها بر اساس ماتریکس آشفتگی

محله	منفی واقعی	منفی واقعی	منفی کاذب	منفی کاذب	حساسیت	ویژگی	دقت
میانگین طول گفته	۲۴	۱۰۳	۵۳	۲۷	۰/۴۷	۰/۶۶	۰/۶۱
نسبت جملات پیچیده	۱۸	۱۲۱	۳۵	۳۳	۰/۳۵	۰/۷۸	۰/۶۷
تعداد حروف ربط	۴۷	۸۸	۶۸	۱۴	۰/۷۳	۰/۵۶	۰/۶۱
نسبت نوع به نشانه	۲۵	۶۵	۹۱	۲۶	۰/۴۹	۰/۴۲	۰/۴۴

توابختنی

پژوهش محدود بود و ممکن است برخی تغییرات زبانی در بازه زمانی طولانی تر قابل مشاهده باشند. ابزار بیشتر بر شاخص‌های زبانی تمرکز داشته و سایر ابعاد روانی‌اجتماعی و محیطی کودک به صورت جامع بررسی نشده است.

پیشنهادات

پیشنهاد می‌شود برای افزایش شانس تعمیم نتایج و نیز بررسی اعتبار و قابلیت استفاده شیوه‌نامه، پژوهش‌هایی با حجم نمونه‌های وسیع‌تر، متنوع‌تر از نظر جغرافیایی، فرهنگی و زبانی (چندزبانگی و دارای اختلالات زبانی به دلایل مختلف) صورت پذیرد. پژوهش‌هایی که بتوانند ارزش این شیوه‌نامه را برای ارزیابی‌ها و پایش‌های طولانی مدت فرآیند رشد زبان و بررسی تأثیر مداخلات درمانی بر شاخص‌های زبانی شفاف نمایند، توصیه می‌شود. همچنین افزودن شاخص‌های مهارت‌های ارتباطی گفتمانی به شاخص‌های حاصل از این شیوه‌نامه در پژوهش‌های آتی می‌تواند کارآمدی آسیب‌شناسان گفتار و زبان را در تشخیص و غربالگری آسیب‌های زبانی افزایش دهد.

ملاحظات اخلاقی

پیروی از اصول اخلاق پژوهش

این مطالعه با کد اخلاق به شماره (IR.SEMUMS.REC.1402.227) از دانشگاه علوم پزشکی سمنان انجام شد. در این مطالعه از نمونه‌های زبانی بهره گرفته شد که برای اخذ نمونه‌ها، والدین فرم رضایت‌نامه کتبی را تکمیل کردند و خود کودکان نیز به‌طور شفاهی رضایت و تمایل‌شان برای همکاری را اعلام کردند.

حامي مالی

این مقاله برگرفته از پایان‌نامه زهرا سعادتی دانشجوی مقطع کارشناسی ارشد رشته گفتاردرمانی، گروه گفتاردرمانی، دانشگاه علوم پزشکی سمنان است. این پژوهش هیچ‌گونه کمک مالی از سازمانی‌های دولتی، خصوصی و غیرانتفاعی دریافت نکرده است.

مشارکت‌نویسندها

مفهوم‌سازی، مدیریت پژوهه و نظارت: معصومه سلمانی، بنفشه منصوری، فاطمه پاک‌نظر و مژگان اسدی؛ روش‌شناسی، اعتبارسنجی و تحلیل: زهرا سعادتی، معصومه سلمانی، فاطمه پاک‌نظر و بنفشه منصوری؛ تحقیق و بررسی: زهرا سعادتی، معصومه سلمانی و مژگان اسدی؛ ویراستاری و نهایی‌سازی: معصومه سلمانی و زهرا سعادتی؛ منابع و نگارش پیش‌نویس: همه نویسندها.

کند. تحلیل ماتریس طبقه‌بندی نشان داد استفاده هم‌زمان از چند شاخص، قدرت پیش‌بینی شیوه‌نامه را به‌شکل معناداری افزایش می‌دهد و از خطای نوع اول و دوم در تشخیص می‌کاهد. این نکته کاربرد مهمی برای استفاده بالینی از ابزار به‌ویژه در مراحل غربالگری و تشخیص اولیه دارد.

نتیجه‌گیری

این مطالعه نشان داد شیوه‌نامه مصاحبه ایوانز و کرگ را می‌توان برای کودکان سنین ۵ تا ۶ سال فارسی‌زبان استفاده نمود. با توجه به تأیید این شیوه‌نامه در فرآیند روانسنجی و تطبیق بین فرهنگی، آسیب‌شناسان گفتار و زبان می‌توانند از این ابزار مطلوب و معتبر در غربالگری و شناسایی آسیب‌های زبانی در دانش‌آموزان مقطع پیش‌دستان استفاده نمایند. این شیوه‌نامه توانست با دقت قابل قبول، تفاوت‌های نحوی و معنایی میان کودکان با آسیب زبانی و همتایان بدون آسیب زبانی را آشکار سازد. همچنین، تحلیل همبستگی شاخص‌های زبانی حاصل از این شیوه‌نامه با نمرات آزمون رشد زبان ۳-۳، نشان‌دهنده روایی ملاکی قابل قبول آن بود. افزون بر این، نتایج این مطالعه بیانگر آن بود که این ابزار نسبت به تغییرات زبانی متعاقب مداخله حساس است و توانایی پایش پیشرفت درمانی را دارد.

نتیجه‌گیری کاربردی

برای غربالگری اولیه کودکان مشکوک به اختلال زبانی، استفاده از شاخص‌هایی با حساسیت بالا مانند «تعداد حروف ربط» توصیه می‌شود.

برای تأیید سلامت زبانی، شاخص‌هایی با ویژگی بالا همچون «نسبت جملات پیچیده» مناسب‌تر هستند.

شاخص‌های متعادل نظیر «میانگین طول گفته» و «نسبت نوع به نشانه» در ترکیب با سایر شاخص‌ها، تصویری جامع‌تر از وضعیت زبانی کودک ارائه می‌دهند.

محدودیت‌ها

این مطالعه با وجود دستاوردهای مهم، دارای محدودیت‌هایی است که باید در تفسیر نتایج مدنظر قرار گیرد. علی‌رغم به کارگیری تعداد قابل توجهی کودک بدون آسیب زبانی، داده‌ها توزیع طبیعی را نشان ندادند. بنابراین تعمیم نتایج به گروه‌های دیگر سنی و فرهنگی باقیستی با احتیاط صورت پذیرد. برای رسیدن به شاخص‌هایی یکدست و متوازن، گروه‌های دوزبانه و کودکان با اختلالات همراه (مانند اختلالات توجه یا هوشیاری) و یا حتی کودکانی که تمایلی به حضور نداشتند و از مطالعه خارج شدند توصیه می‌شود. مجدد تأکید می‌شود تعمیم این نتایج به گروه‌های مذکور امکان‌پذیر نمی‌باشد. مدت‌زمان اجرای این

تعارض منافع

بنابر اظهار نویسنده‌گان، این مقاله تعارض منافع ندارد.

تشکر و قدردانی

این پژوهش با مشارکت و همراهی کودکان و خانواده‌های آن‌ها صورت گرفته است. لذا از حمایت و مشارکت نامبردگان، از سرکار خانم مریم ایمانی دیزج یکان دانشجوی ارشد گفتار درمانی بهدلیل همکاری در بخش اعتبار بین دو ارزیاب نیز قدردانی می‌شود.

References

- [1] Deocares NJ, Macaday RJP, Galve MRB, Paderog DCE, Sernicula JB, Hassan DV, et al. Effect of teacher-child interaction on language development in early childhood learners. *International Journal of Innovative Science and Research Technology*. 2025; (4):1220-5. [\[DOI:10.38124/ijisrt/25apr820\]](https://doi.org/10.38124/ijisrt/25apr820)
- [2] Muhayyo V. Methodology for developing language skills in primary school students. *International Journal of Pedagogics*. 2025; 5(01):5-6. [\[Link\]](#)
- [3] Laasonen M, Smolander S, Lahti-Nuutila P, Leminen M, Lajunen HR, Heinonen K, et al. Understanding developmental language disorder-the helsinki longitudinal SLI study (HelSLI): A study protocol. *BMC Psychology*. 2018; 6(1):24. [\[DOI:10.1186/s40359-018-0222-7\]](https://doi.org/10.1186/s40359-018-0222-7) [\[PMID\]](#)
- [4] Daulay SH, Niswa K, Pratiwi T, Khairun N. Impact of specific language impairment (SLI) in 6-year-old children. *Child Education Journal*. 2022; 4(2):123-38. [\[DOI:10.33086/cej.v4i2.3288\]](https://doi.org/10.33086/cej.v4i2.3288)
- [5] Flapper BC, Schoemaker MM. Developmental coordination disorder in children with specific language impairment: Co-morbidity and impact on quality of life. *Research in Developmental Disabilities*. 2013; 34(2):756-63. [\[DOI:10.1016/j.ridd.2012.10.014\]](https://doi.org/10.1016/j.ridd.2012.10.014) [\[PMID\]](#)
- [6] Zhang S, Zhang Z, Shen J, Ren L, Yuan Y, Xia L, et al. Construction and application effect analysis of parent training model for children with language development delay: A case study of chongqing area. *Education Reform and Development*. 2025; 7(3):1-7. [\[DOI:10.26689/erd.v7i3.10064\]](https://doi.org/10.26689/erd.v7i3.10064)
- [7] Caesar LG, Kohler PD. Tools clinicians use: a survey of language assessment procedures used by school-based speech-language pathologists. *Communication Disorders Quarterly*. 2009; 30(4):226-36. [\[DOI:10.1177/1525740108326334\]](https://doi.org/10.1177/1525740108326334)
- [8] Kapantzoglou M, Fergadiotis G, Restrepo MA. Language sample analysis and elicitation technique effects in bilingual children with and without language impairment. *Journal of Speech, Language, and Hearing Research*. 2017; 60(10):2852-64. [\[DOI:10.1044/2017_JSLHR-L-16-0335\]](https://doi.org/10.1044/2017_JSLHR-L-16-0335) [\[PMID\]](#)
- [9] Wu HP, Hsieh FH, Chen YL. Interactive gesture-based assessment for preschool hakka language learning: An innovative approach to assessing children's proficiency. *Educational Innovations and Emerging Technologies*. 2024; 4(1):28-41. [\[Link\]](#)
- [10] Yonovitz LB, Andrews KR. A Play and story-telling probe for assessing early language content. *Journal of Childhood Communication Disorders*. 1995; 16(2):10-8. [\[DOI:10.1177/152574019501600202\]](https://doi.org/10.1177/152574019501600202)
- [11] Horovitz JE, Oetting J. Effects of input manipulations on the word learning abilities of children with and without specific language impairment. *Applied Psycholinguistics*. 2004; 25(1):43-65. [\[DOI:10.1017/S0142716404001031\]](https://doi.org/10.1017/S0142716404001031)
- [12] Spaulding TJ, Plante E, Kimberly FA. Eligibility criteria for language impairment: Is the low end of normal always appropriate? *Language, Speech, and Hearing Services in Schools*. 2006; 37(1):61-72. [\[DOI:10.1044/0161-1461\(2006/007\)\]](https://doi.org/10.1044/0161-1461(2006/007)) [\[PMID\]](#)
- [13] Eisenberg SL, Govern Fersko TM, Lundgren C. The use of MLU for identifying language impairment in preschool children: A review. *American Journal of Speech-Language Pathology*. 2001; 10(4):323-42. [\[DOI:10.1044/1058-0360\(2001/028\)\]](https://doi.org/10.1044/1058-0360(2001/028))
- [14] Ukrainetz TA, Justice LM, Kaderavek JN, Eisenberg SL, Gilham RB, Harm HM. The development of expressive elaboration in fictional narratives. *Journal of Speech, Language, and Hearing Research*. 2005; 48(6):1363-77. [\[DOI:10.1044/1092-4388\(2005/095\)\]](https://doi.org/10.1044/1092-4388(2005/095)) [\[PMID\]](#)
- [15] Westerveld MF, Gillon GT. Profiling oral narrative ability in young school-aged children. *International Journal of Speech-Language Pathology*. 2010; 12(3):178-89. [\[DOI:10.3109/17549500903194125\]](https://doi.org/10.3109/17549500903194125) [\[PMID\]](#)
- [16] Westerveld MF, Gillon GT, Moran C. A longitudinal investigation of oral narrative skills in children with mixed reading disability. *International Journal of Speech-Language Pathology*. 2008; 10(3):132-45. [\[DOI:10.1080/14417040701422390\]](https://doi.org/10.1080/14417040701422390) [\[PMID\]](#)
- [17] Heilmann J, Miller JF, Nockerts A, Dunaway C. Properties of the narrative scoring scheme using narrative retells in young school-age children. *American Journal of Speech-Language Pathology*. 2010; 19(2):154-66. [\[DOI:10.1044/1058-0360\(2009/08-0024\)\]](https://doi.org/10.1044/1058-0360(2009/08-0024)) [\[PMID\]](#)
- [18] Hadley PA. Language sampling protocols for eliciting text-level discourse. *Language, Speech, and Hearing Services in Schools*. 1998; 29(3):132-47. [\[DOI:10.1044/0161-1461.2903.132\]](https://doi.org/10.1044/0161-1461.2903.132) [\[PMID\]](#)
- [19] Ukrainetz TA. Contextualized language intervention: Scaffolding PreK-12 literacy achievement. London: Thinking Publications; 2007. [\[Link\]](#)
- [20] Bliss LS, McCabe A, Miranda AE. Narrative assessment profile: Discourse analysis for school-age children. *Journal of Communication Disorders*. 1998; 31(4):347-63. [\[DOI:10.1016/S0021-9924\(98\)00009-4\]](https://doi.org/10.1016/S0021-9924(98)00009-4) [\[PMID\]](#)
- [21] Nelson NW. Childhood language disorders in context: Infancy through adolescence. Boston: Allyn and Bacon; 1998. [\[Link\]](#)
- [22] Klee T, Stokes SF, Wong AMY, Fletcher P, Gavin WJ. Utterance length and lexical diversity in Cantonese-speaking children with and without specific language impairment. *Journal of Speech, Language, and Hearing Research*. 2004; 47(6):1396-410. [\[DOI:10.1044/1092-4388\(2004/104\)\]](https://doi.org/10.1044/1092-4388(2004/104)) [\[PMID\]](#)
- [23] Thordardottir ET, Weismar SE. Content mazes and filled pauses in narrative language samples of children with specific language impairment. *Brain and Cognition*. 2002; 48(2-3):587-92. [\[DOI:10.1006/brcg.2001.1422\]](https://doi.org/10.1006/brcg.2001.1422) [\[PMID\]](#)
- [24] Owen AJ, Leonard LB. Lexical diversity in the spontaneous speech of children with specific language impairment. *Journal of Speech, Language, and Hearing Research*. 2002; 45(5):927-37. [\[DOI:10.1044/1092-4388\(2002/075\)\]](https://doi.org/10.1044/1092-4388(2002/075)) [\[PMID\]](#)
- [25] Paradis J. The interface between bilingual development and specific language impairment. *Applied Psycholinguistics*. 2010; 31(2):227-52. [\[DOI:10.1017/S0142716409990373\]](https://doi.org/10.1017/S0142716409990373)
- [26] Hasanzadeh S, Minaci A. [Adaptation and standardization of the test of TOLD-P: 3 for Farsi - speaking children of Tehran (Persian)]. *Journal of Exceptional Children*. 2002; 1(2):119-34. [\[Link\]](#)

- [27] Kianfar F, Akhavan N, Ghasisin L, Sadeghi S, Love T, Blumenfeld HK. Persian adaptation of the SOAP test of sentence comprehension. *Perspectives of the ASHA Special Interest Groups*. 2025; 10(3):991-1011. [\[DOI:10.1044/2025_PERSP-24-00055\]](https://doi.org/10.1044/2025_PERSP-24-00055)
- [28] Armon-Lotem S, De Jong J, Meir N. Assessing multilingual children: Disentangling bilingualism from language impairment. Bristol: Blue Ridge Summit: Multilingual Matters; 2015. [\[DOI:10.21832/9781783093137\]](https://doi.org/10.21832/9781783093137)
- [29] Anthony T. Emotional intelligence in second year nursing students: measuring the impact of a single intervention [PhD dissertation]. Kentucky, United States: Bellarmine University; 2022. [\[Link\]](#)
- [30] Nilipour R, Qoreishi ZS, Ahadi H, Pourshahbaz A. Development and standardization of persian language developmental battery. *Archives of Rehabilitation*. 2023; 24(2):172-95. [\[DOI:10.32598/RJ.24.2.2191.5\]](https://doi.org/10.32598/RJ.24.2.2191.5)
- [31] Kohestani F, Rezaei P, Nakhshab M. Developing a Persian version of the checklist of pragmatic behaviors and assessing its psychometric properties: A preliminary study. *Archives of Rehabilitation*. 2020; 21(3):358-75. [\[DOI:10.32598/RJ.21.3.2923.1\]](https://doi.org/10.32598/RJ.21.3.2923.1)
- [32] Evans JL, Craig HK. Language sample collection and analysis: Interview compared to freeplay assessment contexts. *Journal of Speech, Language, and Hearing Research*. 1992; 35(2):343-53. [\[DOI:10.1044/jshr.3502.343\]](https://doi.org/10.1044/jshr.3502.343) [\[PMID\]](#)
- [33] Kazemi Y, Klee T, Stringer H. Diagnostic accuracy of language sample measures with Persian-speaking preschool children. *Clinical Linguistics & Phonetics* 2015; ;29(4):304-18. [\[PMID\]](#)
- [34] Paradis J, Sorenson Duncan T, Thomlinson S, Rusk B. Does the use of complex sentences differentiate between bilinguals with and without DLD? Evidence from conversation and narrative tasks. *Frontiers in Education*. 2022; 6:2021. [\[DOI:10.3389/feduc.2021.804088\]](https://doi.org/10.3389/feduc.2021.804088)
- [35] Thompson CK, Shapiro LP. Complexity in treatment of syntactic deficits. *American Journal of Speech-Language Pathology*. 2007; 16:30-42. [\[DOI:10.1044/1058-0360\(2007/005\)\]](https://doi.org/10.1044/1058-0360(2007/005)) [\[PMID\]](#)