

Case Paper

Prosthetic Reconstruction of Maxillofacial Orbital Defect With Combined Retention: Case Study

Fatemeh Zarezadeh¹ , Zahra Khajooei² , Faezeh Babaei¹ , Marzieh Saedi¹ , *Mohammad Ali Mardani^{1,3}

1. Department of Orthotics and Prosthetics, Faculty of Rehabilitation, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.

2. Department of Orthotics and Prosthetics, Rehabilitation Research Center, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran.

3. Red Crescent Society of Yazd Province, Yazd, Iran.

Citation Zarezadeh F, Khajooei Z, Babaei F, Saedi M, Mardani MA. Prosthetic Reconstruction of Maxillofacial Orbital Defect With Combined Retention: Case Study. *Archives of Rehabilitation*. 2026; 26(4):654-667. <https://doi.org/10.32598/RJ.26.4.913.5>

doi <https://doi.org/10.32598/RJ.26.4.913.5>

ABSTRACT

Objective The complete or partial absence of the eye and its surrounding structures is one of the most important defects in the facial area, which can occur for various reasons, including trauma, cancer, congenital diseases, or surgeries related to benign and malignant tumors. These defects have a significant impact on the quality of life of patients, both functionally and aesthetically. Reconstruction of this area can be done through surgical methods or the use of silicone prostheses. Due to the complexity of the orbital structures, their reconstruction, especially with surgical methods, is one of the main challenges in the field of facial reconstruction. The choice between surgery and prosthesis depends on the lesion and the patient's condition and wishes. This article reviews the fabrication and use of orbital silicone prostheses, while also discussing the benefits and challenges of these procedures.

Materials & Methods In this study, a 60-year-old woman with an orbital defect and no history of receiving a prosthesis was referred. All stages of evaluation, impression, and retention method selection were performed on the patient. A suitable donor was selected to obtain the orbital wax pattern, and an impression was taken from the donor. The wax-up, ocular placement, impression-making, and staining steps were completed, and the final prosthesis was made.

Results In this method, the detailed steps of the work, the required points, and the challenges of construction were discussed. These points, by mentioning them in detail, can be introduced as a method for reconstructing other defects. Finally, the final prosthesis was made with silicone and acrylic.

Conclusion The final prosthesis was fabricated with an emphasis on maintaining a natural appearance, lightness, use of appropriate materials, and retention method. The patient was satisfied with the ease of putting on and taking off the prosthesis, proper fit, and its natural appearance.

Keywords Silicone prosthesis, Orbital, Maxillofacial reconstruction, Retention

Received: 25 May 2025

Accepted: 31 Aug 2025

Available Online: 01 Jan 2026

*** Corresponding Author:**

Mohammad Ali Mardani, PhD.

Address: Department of Orthotics and Prosthetics, Faculty of Rehabilitation, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.

Tel: +98 (21) 22180077

E-Mail: natelnoory@yahoo.com

Copyright © 2026 The Author(s);

This is an open access article distributed under the terms of the Creative Commons Attribution License (CC-By-NC: <https://creativecommons.org/licenses/by-nc/4.0/legalcode.en>), which permits use, distribution, and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

English Version

Introduction

Orbital defects, whether due to congenital diseases, trauma, or surgical complications, can significantly affect patients' quality of life. In addition to their functional impact on vision and facial structure, these defects also have considerable psychological and social consequences, often leading to reduced self-confidence and social isolation [1].

One of the effective solutions for compensating these defects is the use of orbital prostheses, whose primary goal is to restore the natural appearance of the face and improve the psychological well-being of patients. Studies have shown that silicone prostheses can help improve patients' self-confidence and sense of satisfaction, as well as facilitate the return to social activities [2, 3].

In addition to aesthetic aspects, reconstruction of orbital defects using prostheses can improve quality of life both functionally and cosmetically. One of these methods involves the design and manufacture of prostheses using technologies such as 3D modeling, which provide high precision in reconstructing anatomical details [4]. However, the high cost of these designs and the unavailability of such technologies in many countries multiply the need to provide simple and accessible methods for manufacturing maxillofacial prostheses. In prosthetic studies, especially those involving maxillofacial prostheses, methods are typically presented in a case-based and technical manner, describing and introducing a specific fabrication technique. In a study on a patient with a partial ear defect, the prosthesis was fabricated using the self-suspension method. An important point in this article was the preservation of the remaining organ that was removed in the surgical procedure, and another was the introduction of a new method of suspending ear prostheses [5].

Given the importance of this issue, the present study focuses on the design and fabrication of an orbital prosthesis that not only restores the natural appearance of patients but can also play a significant role in improving their psychological well-being and functional performance. This study aims to provide a simple and comprehensive solution for orbital reconstruction using accessible methods and materials, while also evaluating its positive effects on patients' self-confidence and quality of life. Considering the novelty of topics related to maxillofacial prostheses, the introduction of required materi-

als, fabrication tools, impression techniques, mold-making, casting materials, and various suspension methods can serve as a valuable contribution in presenting one of the fabrication techniques to the clinical and therapeutic community.

Materials and Methods

In this study, a 60-year-old woman with an orbital defect and no history of receiving a prosthesis was referred. To begin the process of fabricating the orbital prosthesis, the first step was patient evaluation. At this stage, examinations included assessment of the sensitivity, stiffness, and softness of the healthy or unhealthy tissue, and the presence of bleeding, wounds, or injuries in the orbital area (Figure 1). One of the important aspects of this stage was evaluating the patient's psychological readiness to receive a prosthesis. Different retention methods were explained to the patient. Given the patient's reluctance to undergo reoperation and implant placement, his reluctance to use adhesives, and the fact that she wore glasses, a combined mechanical and anatomical retention method was selected [5].

The second stage was the fabrication of the primary or base color. Matching the skin, considering the tissue, surrounding lines, and color, is a very difficult task. Skin color varies under different pathological and physiological conditions, and it also depends on factors such as blood vessels and the presence of pigments like melanin and carotene.

After completing the evaluation stages, an impression of the patient was taken (Figure 2). Molding was performed of both the healthy and defective orbital areas, as well as the surrounding regions, including the eyelids and the remaining soft tissue, to ensure precise adaptation of the prosthesis. At this stage, a precise mold of the orbital area was prepared using suitable impression materials such as alginate (Iranian Chromogel alginate). For facial impression, the patient's face must be completely horizontal, and a tray is used to hold the alginate in place. Eyelashes and eyebrows are isolated with Vaseline. The alginate is mixed with cold water and placed into the tray. To support the volume of the alginate, pieces of plaster bandage are applied on top. The alginate is ready for removal after 5 minutes.

The third stage involves molding the affected side. The most important rule when taking an impression of the damaged area is to prevent compression or displacement of the tissues. Any distortion during the molding process will result in an inaccurate mold, and ultimately, a pros-

Figure 1. Evaluation of the defect area

Archives of
Rehabilitation

thesis that does not fit the patient properly. Factors that cause these distortions include: Rotation of the neck during molding, Heaviness of the molding material, Shrinkage of the impression material.

By considering the above points, errors during the molding process can be minimized. Alginate comes in powder form and must be mixed with cold water (Figure 3). After the alginate becomes stiff, it is carefully removed from the defect. A Gypsum plaster was used to fill the space in the orbital area (Figure 4).

After preparing the initial mold, necessary modifications were made to the plaster mold in the orbital area to ensure its accuracy and precise adaptation to the targeted region. Then, in the lower section, layers of wax were gradually added to shape the final form of the eyelids and other soft tissue structures of the eye region (Figure 5).

In the next stage, the prosthetic eye was positioned, and layers of wax were added to reconstruct the eyelids and achieve the precise shape of the orbital area. This step was performed to ensure an accurate fit between the prosthesis and the patient's anatomy (Figure 6).

Figure 3. Preparation of the alginate mold for creating the plaster cast

Archives of
Rehabilitation

Figure 2. Facial impression

Archives of
Rehabilitation

The final form of the prosthesis was then carefully completed, paying attention to details such as the eyelids and soft tissue features (Figure 7). Next, the final molding of the prosthesis and the prosthetic eye (Acropars heat-cured acrylic) was performed, and the eye was fixed in place to prepare for the subsequent stages (Figure 7).

For precise placement of the ocular, the distance from the pupil of the healthy side to the nasal bridge line was measured using a digital PD meter, and the ocular piece was placed on the prosthetic side between the wax layers. The next stage, after completing the wax modeling, is the final molding. Depending on the scope of the work and the complexities of the amputated area, two-, three-, or four-part molds are prepared to prevent tearing of the silicone during removal. For this reason, a two-part mold is first created. The additional parts of the mold are then made using plaster (Figure 8).

Figure 4. Modifying the plaster cast and creating a gap between the prosthesis and the tissue

Archives of
Rehabilitation

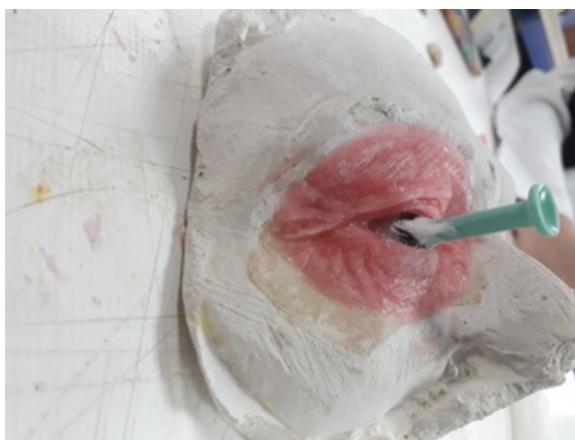
Figure 5. Wax mold from the donor site

Archives of
Rehabilitation

The excess wax was then removed from the mold using boiling water, preparing the mold for silicone pouring.

For the fabrication of the final prosthesis, RTV silicone (RTV2 silicones with a hardness of 10 or 20) was mixed with an appropriate color. This mixture was blended with cosmetic and oil-based colors to achieve the best match with the patient's skin tone. During this stage, color matching was checked under natural light to ensure a natural appearance of the final prosthesis. For secondary coloring, oil-based paints were used; in the presence of the patient, the selected color was mixed with silicone adhesive and applied to the prosthesis using a sponge or fine brush. Finally, the prosthesis was allowed to rest for 24 hours to dry and for better color integration (Figure 9).

In the final stage, the prosthesis was evaluated on the patient's face for shape, color, size, placement, angulation, and proper suspension. After making the necessary


Figure 6. Modification of the wax mold according to the appearance of the healthy side

corrections and adjustments, the silicone prosthesis was delivered to the patient for use (Figure 10).

Discussion

Prosthetic rehabilitation offers the fastest method of restoring facial aesthetics to a normal or near-normal appearance, requiring the least time and cost for the patient. In addition, this method does not involve the surgical risk, except in cases where an initial surgical procedure on the affected area is necessary to achieve a better prosthesis fit on the face [6].

Recent studies emphasize the importance of orbital reconstruction using silicone prostheses. These methods not only provide patients with a more natural appearance but also play a key role in restoring self-confidence and improving their quality of life. For example, the use of silicone prostheses and craniofacial implants has shown

Figure 7. Fixation of the ocular component before molding

Archives of
Rehabilitation

Figure 8. Fabrication of a two-part mold and preparation for silicone injection

Archives of
Rehabilitation

Archives of
Rehabilitation

Figure 9. Secondary coloring and preparation of the prosthesis
significant positive effects in enhancing social functioning and reducing patients' psychological anxiety [7].

Orbital prostheses are recognized as an effective solution for restoring appearance and improving the quality of life in patients with orbital defects. This method plays a significant role in helping patients return to their social lives by providing a natural appearance, increasing self-confidence, and mitigating negative psychological effects. With a focus on precise design and high-quality materials, lightweight, aesthetic, and comfortable prostheses can be offered that achieve desirable results without the need for complex interventions. Attention to the individual needs of each patient during the fabrication process is the key to the success of this method [8]. We must consider that each patient consults a prosthodontist with unique and individual problems; however, during the fabrication of the prosthesis, it is essential to consider many of the aforementioned factors. The selection of a suspension system for such patients should be made in a way that addresses their problem while remaining easy to use.

Studies on patients who have undergone orbital surgery show that reconstruction with prostheses can significantly reduce depression and anxiety, while improving their quality of life [9].

Description of the constructed prosthesis

As mentioned, an impression is taken from the patient's orbital region, and following the described steps, the prosthesis is fabricated. However, to achieve an ideal facial prosthesis, three essential principles must be observed: the use of a simple and comfortable suspension system, a natural appearance of the prosthesis, and ensuring its durability [2].

Archives of
Rehabilitation**Figure 10.** Final fit of the prosthesis

Use of a simple and comfortable suspension system

The first key factor for achieving an ideal facial prosthesis is the use of an appropriate retention method to ensure that the prosthesis is positioned correctly and is easy to use. Attention to this point is highly important during prosthesis fabrication and should be the first factor considered before starting any work on a maxillofacial prosthesis.

When selecting a suspension method, the prosthesis should be easy to use, simple to wear and remove, cause no skin sensitivity, and preserve the remaining tissues. Achieving proper retention also requires careful consideration of the prosthesis's weight, size, and the position of the outer contour lines of the affected area. The overall weight of the prosthesis is determined by the material used in its fabrication. However, the modeling and wax-up stages should be performed in a way that minimizes material usage, resulting in a lighter prosthesis with better suspension. The size of the prosthesis also depends on the type of suspension method chosen for it.

Natural appearance of the prosthesis

The second factor we considered for achieving an ideal prosthesis was its natural appearance. However, to achieve the best aesthetic outcome, two fundamental principles must be observed: form and color.

Form

The most important principle in the appearance of a prosthesis is that its physical and anatomical shape is accurate. During the wax modeling stage, this principle must be given significant attention, ensuring that all anatomical structures are clearly represented.

Color

Color, like form, is one of the most important factors in making a prosthesis appear natural. The color used

on the prosthesis should be similar to the patient's skin. Therefore, one of the key criteria for judging the quality of a prosthesis is its color. To achieve a prosthesis that appears lifelike and natural, we must put the factors mentioned above at the forefront of our work, and the correct color selection is a crucial part of this process. The colors we used for this purpose included cosmetic colors from Dermacolor and oil paints commonly used by artists. For the oil paints, we used three primary colors: red, blue, and green.

Conclusion

The advantages of this prosthesis fabrication method include rapid production and reduced prosthetic treatment time, ease of use with simple insertion and removal, no skin sensitivity, increased prosthesis longevity, lower cost, and ultimately, reduced psychological distress and restoration of appearance.

Nevertheless, it is worth noting that the methods presented in this study and the related articles are considered alongside other approaches. Ultimately, as previously mentioned, numerous factors, resources, and conditions influence the prosthetist's choice of fabrication method [5].

Ethical Considerations

Compliance with ethical guidelines

In this study, the participant was informed of the study objectives and were free to withdraw at any time. This study was approved by the Ethics Committee of the [University of Social Welfare and Rehabilitation Sciences](#) (Code: IR.USWR.REC.1402.178).

Funding

This study was funded by the [University of Social Welfare and Rehabilitation Sciences](#).

Authors' contributions

Conceptualization, methodology, referencing, writing, and preparation of the original draft were carried out by all authors under the supervision of Fatemeh Zare Zadeh and Mohammad Ali Mardani.

Conflict of interest

This article has no conflict of interest.

Acknowledgments

The authors sincerely thank the Vice-Chancellor for Research and Technology of the [University of Social Welfare and Rehabilitation Sciences](#) as well as the participant for their support and cooperation.

This Page Intentionally Left Blank

مقاله موردی

بازسازی پروتزی نقص فکی صورتی اوربیتال با ریتنشن ترکیبی: مطالعه موردی

فاطمه زارعزاده^۱, زهرا خواجه‌یی^۲, فائزه بابایی^۱, مرضیه ساعدی^۱, محمد علی مردانی^{۳*}

۱. گروه ارتز و پروتز، دانشکده توانبخشی، دانشگاه علوم توانبخشی و سلامت اجتماعی، تهران، ایران.
۲. گروه ارتز و پروتز، مرکز تحقیقات توانبخشی، دانشگاه علوم پزشکی و خدمات بهداشتی درمانی ایران، تهران، ایران.
۳. جمعیت هلال احمر استان یزد، یزد، ایران.

Citation Zarezadeh F, Khajooei Z, Babaei F, Saedi M, Mardani MA. Prosthetic Reconstruction of Maxillofacial Orbital Defect With Combined Retention: Case Study. *Archives of Rehabilitation*. 2026; 26(4):654-667. <https://doi.org/10.32598/RJ.26.4.913.5>

doi <https://doi.org/10.32598/RJ.26.4.913.5>

جکد

هدف فقدان تمام یا بخشی از چشم و ساختارهای اطراف آن یکی از نواقص مهم در ناحیه صورت است که می‌تواند به دلایل مختلفی از جمله تروم، سرطان، بیماری‌های مادرزادی یا جراحی‌های مرتبط با تومورهای خوش‌خیم و بدخیم رخ دهد. این نواقص نه تنها از نظر عملکردی بلکه از نظر زیبایی نیز تأثیر چشمگیری بر کیفیت زندگی بیماران دارند. بازسازی این ناحیه می‌تواند از طریق روش‌های جراحی یا استفاده از پروتزهای سیلیکونی انجام شود. با توجه به پیچیدگی ساختارهای ناحیه اوربیتال، بازسازی آن به‌ویژه با روش‌های جراحی، یکی از چالش‌های اصلی در زمینه ترمیم چهره است. انتخاب بین جراحی یا پروتز، به ضایعه و شرایط و خواست بیمار بستگی دارد. این مقاله به بررسی ساخت و استفاده از پروتزهای سیلیکونی اوربیتال می‌پردازد، در حالی که مزایا و چالش‌های این روش‌ها نیز مورد بحث قرار گرفته است.

روش پژوهی در این مطالعه، خانمی ۶۰ ساله و با نقص اوربیتال و بدون سابقه دریافت پروتز مراجعه نمودند. کلیه مراحل ارزیابی، ایمپرشن، انتخاب روش ریتنشن از بیمار صورت گرفت. دانه مناسب برای دستیابی به الگوی مومن اوربیتال انتخاب گردید و از دانه نیز قالب‌گیری انجام گرفت. مراحل اصلاح موم، جای‌گذاری اکولار، قالب‌سازی و رنگ‌آمیزی انجام و پروتز نهایی ساخته شد.

یافته‌ها در این روش مراحل دقیق کار و نکات موردنیاز و چالش‌های ساخت مطرح شد. نکاتی که با ذکر جزئیات آن می‌تواند به عنوان یک روش برای بازسازی دیگر تقاضی صورت، معروفی گردد در انتهای پروتز نهایی با سیلیکون و اکریل ساخته شد.

نتیجه‌گیری پروتز نهایی با تأکید بر حفظ ظاهر طبیعی، سبکی، استفاده از مواد مناسب و روش ریتنشن ساخته شد. بیمار نسبت به راحت پوشیدن و درآوردن پروتز، قالب‌گیری مناسب و ظاهر طبیعی آن احساس رضایت داشت.

کلیدواژه‌ها پروتز سیلیکونی، اوربیتال، بازسازی فکی صورتی، ریتنشن

تاریخ دریافت: ۰۴ خرداد ۱۴۰۴

تاریخ پذیرش: ۰۹ شهریور ۱۴۰۴

تاریخ انتشار: ۱۱ دی ۱۴۰۴

* نویسنده مسئول:

دکتر محمد علی مردانی

نشانی: تهران، دانشگاه علوم توانبخشی و سلامت اجتماعی، دانشکده توانبخشی، گروه ارتز و پروتز.

تلفن: +۹۸ (۰)۲۲۱۸۰۰۷۷

ایمیل: natelnoory@yahoo.com

مرحله ارزیابی

برای شروع روند ساخت پروتتر اوربیتال ابتدا مرحله ارزیابی بیمار انجام شد. در این مرحله بررسی‌ها شامل معاینه حساسیت سفتی و نرمی بافت سالم یا ناسالم بودن بافت وجود خون‌ریزی زخم یا جراحت در ناحیه اوربیتال بود (تصویر شماره ۱). یکی از موارد مهم در این مرحله ارزیابی آمادگی روحی بیمار جهت دریافت پروتتر بود. ا نوع روش‌های ریتنشن برای بیمار توضیح داده شد. با توجه به عدم تمایل بیمار نسبت به جراحی مجدد و کارگزاری ایمپلنت و عدم تمایل به استفاده از چسب و با توجه به عینکی بودن بیمار، روش ریتنشن به صورت ترکیبی مکانیکال و اناتومیکال انتخاب شد [۵].

مرحله دوم

مرحله دوم ساخت رنگ اولیه یا زمینه بود. همانندسازی پوست با توجه به بافت، خطوط اطراف و رنگ، کار بسیار مشکلی می‌باشد. رنگ پوست در شرایط مختلف پاتولوژیکی و فیزیولوژیکی متفاوت می‌باشد. همچنین رنگ پوست به فاکتورهایی از قبیل عروق خونی و به وجود رنگدانه‌ها مثل ملانین و کاروتون بستگی دارد.

پس از تکمیل مراحل ارزیابی، ایمپرشن از بیمار انجام شد (تصویر شماره ۲). قالب‌گیری از ناحیه اوربیتال سالم و دچار نقص بیمار و ناحیه اطراف آن شامل پلک‌ها و بخش‌های باقیمانده بافت نرم برای اطمینان از تطابق دقیق پروتتر انجام شد. در این مرحله با استفاده از مواد قالب‌گیری مناسب مانند آرژینات (آرژینات کروموزل ایرانی)، قالب دقیق از ناحیه اوربیتال تهیه شد. برای قالب‌گیری صورت باید کاملاً افقی باشد، تریگزاری جهت نگهداشتن آرژینات انجام شود. سپس مژه‌ها و ابرو با واژلین ایزوله گردد. آرژینات رفیق و با آب سرد آماده می‌شود و در تری ریخته می‌شود. برای ساپورت حجم آرژینات از تکه‌های باند گچی بر روی آن استفاده می‌کنیم. آرژینات بعد از ۵ دقیقه آماده برداشتن است.

مرحله سوم

مرحله سوم قالب‌گیری از سمت آسیب‌دیده می‌باشد. مهم‌ترین قانون در قالب‌گیری از سطح آسیب‌دیده این است که از تراکم و جایه‌جایی بافت‌ها جلوگیری شود. هر گونه کج و کولگی در حین قالب‌گیری باعث می‌شود یک قالب اشتباه داشته باشیم و در نهایت یک پروتتری درست خواهیم کرد که فیت بیمار نمی‌باشد. عواملی که باعث این کج و کولگی‌ها می‌شود عبارت‌اند از:

چرخش گردن در حین قالب‌گیری-سنگین بودن مواد قالب‌گیری-جمع شدگی مواد قالب‌گیری

که با در نظر گرفتن موارد فوق می‌توان اشتباهات در حین قالب‌گیری را به حداقل رساند. آرژینات به شکل پودر می‌باشد و باید آن را با آب سرد مخلوط کنیم (تصویر شماره ۳). پس از

مقدمه

نقص‌های اوربیتال، چه بدلیل بیماری‌های مادرزادی، چه در اثر آسیب یا عوارض جراحی می‌تواند به شدت بر کیفیت زندگی بیماران تأثیر بگذاردند. این نقص‌ها، علاوه بر تأثیرات عملکردی بر بینایی و ساختار صورت، پیامدهای روانی و اجتماعی قابل توجهی دارند که اغلب باعث کاهش اعتمادبهنفس و انزوای اجتماعی می‌شوند [۱].

یکی از راه حل‌های مؤثر برای جبران این نقص‌ها، استفاده از پروتترهای اوربیتال است که هدف اصلی آن‌ها بازسازی ظاهر طبیعی چهره و بهبود روان‌شناختی بیماران است. مطالعات نشان داده‌اند پروتترهای سیلیکونی می‌توانند به بهبود اعتمادبهنفس و احساس رضایت بیماران کمک کنند و همچنین بازگشت به فعالیت‌های اجتماعی را تسهیل نمایند [۲، ۳].

علاوه بر جنبه‌های ظاهری، بازسازی نقص‌های اوربیتال با استفاده از پروتترها می‌تواند کیفیت زندگی را از نظر عملکردی و زیبایی بهبود بخشد. یکی از این روش‌ها شامل طراحی و ساخت پروتتر با استفاده از تکنولوژی‌هایی مانند مدل‌سازی سه‌بعدی هستند که دقت بالایی در بازسازی جزئیات آناتومیکی ارائه می‌دهند [۴]. اما معمولاً هزینه بالای این طراحی‌ها و نبود این تکنولوژی در اکثر کشورها، لزوم ارائه این روش‌های ساده و در دسترس ساخت پروتترهای فکی صورتی را چند برابر می‌کند. در مطالعات پروتتری مخصوصاً پروتترهای فکی صورتی معمولاً به صورت موردی و تکنیکیل روش خاص ساخت پروتتر شرح داده شده و آن روش معرفی می‌گردد. در مطالعه بر روی بیماری با نقص پارشیال گوش ساخت پروتتر با روش خود تعلیق شرح داده شد. نکته حائز اهمیت در این مقاله حفظ باقیمانده عضو بود که در روش جراحی حذف می‌گردد و دیگری معرفی روش جدید تعلیق پروتترهای گوش بود [۵].

باتوجه به اهمیت این موضوع، تحقیق حاضر به بررسی طراحی و ساخت یک پروتتر اوربیتال می‌پردازد که نه تنها ظاهر طبیعی بیماران را بازسازی می‌کند، بلکه می‌تواند نقش مؤثری در بهبود روانی و عملکردی آن‌ها داشته باشد. هدف از این مطالعه، ارائه یک راه حل ساده و کامل برای بازسازی اوربیتال، با استفاده از روش‌ها و مواد در دسترس و بررسی اثرات مثبت آن بر اعتمادبهنفس و کیفیت زندگی بیماران است. باتوجه به جدید بودن مباحث مربوط به پروتترهای فکی صورتی، معرفی مواد موردنیاز، ابزارهای ساخت، روش‌های قالب‌گیری، قالب‌سازی، موادرپزی و انواع روش‌های تعلیق می‌تواند به عنوان کمک مؤثری در شناخت یکی از روش‌های ساخت به جامعه کلینیکی و درمانی معرفی گردد.

روش بررسی

در این مطالعه خانمی ۶۰ ساله و با نقص اوربیتال و بدون سابقه دریافت پروتتر مراجعة نمودند.

توابختنى

تصویر ۲. ایمپرشن از صورت

شده و اکولار در سمت پروتزی و بین مومها قرار می‌گیرد. مرحله بعد از اتمام مدل سازی با موم، قالب سازی نهایی است و با توجه به وسعت کار و پیچیدگی‌های عضو قطع شده، قالب‌های ۲، ۳ و ۴ تکه فراهم می‌نماییم تا پس از اینکه سیلیکون را ریختیم و در هنگام در آوردن سیلیکون پاره نشود. به همین دلیل ابتدا یک قالب دو تکه تهیه می‌کنیم. تکه‌های دیگر این قالب را با گچ تهیه می‌کنیم (تصویر شماره ۸).

سپس موم‌های اضافه با استفاده از آب جوش از قالب جدا شدند تا قالب آماده برای سیلیکون ریزی شود.

برای ساخت پروتز نهایی سیلیکون ارتی وی (سیلیکون‌های RTV با سختی ۱۰ یا ۲۰) با رنگ مناسب ترکیب شد. این ترکیب با توجه به رنگ پوست بیمار با رنگ‌های آرایشی و رنگ روغن مخلوط شد تا بهترین تطابق رنگی با پوست ایجاد شود. در طول این مرحله تطابق رنگ در نور طبیعی مورد بررسی قرار گرفت تا پروتز نهایی طبیعی به نظر برسد. برای رنگ‌آمیزی ثانویه پر از رنگ روغن استفاده شد. بدین ترتیب در حضور بیمار و مطابق با رنگ سیلیکون رنگ مناسب با چسب سیلیکون مخلوط شد و با کمک اسفنج یا قلموی نقاشی بسیار طریفی بر روی پروتز کشیده شد و نهایتاً ۲۴ ساعت زمان استراحت برای پروتز جهت

توابختنى

تصویر ۴. اصلاح قالب گچی و ایجاد فاصله بین پروتز و بافت

توابختنى

تصویر ۱. ارزیابی ناحیه نقص

سفت شدن آرژینات، آن را به آهستگی از روی نقص خارج کرده؛ و در مرحله بعد آن را از گچ دندانپزشکی (گچ مولدانو) پر می‌کنیم (تصویر شماره ۴). از یک لانگت برای پر کردن فضای خالی ناحیه اوربیتال استفاده شد.

پس از تهیه قالب اولیه اصلاحات لازم بر روی قالب گچی در ناحیه اوربیتال انجام گرفت تا از دقت و تطابق کامل آن با ناحیه مدنظر اطمینان حاصل شود. سپس در بخش زبرین لایه‌هایی از موم به صورت تدریجی اضافه شدند تا فرم نهایی پلکها و دیگر ساختارهای نرم ناحیه چشم شکل بگیرد (تصویر شماره ۵).

در مرحله بعد چشم پروتزی در موقعیت خود قرار گرفت و لایه‌های موم برای بازسازی پلکها و فرم دقیق ناحیه اوربیتال اضافه شدند. این مرحله به منظور ایجاد تطابق دقیق میان پروتز و آناتومی بیمار انجام شد (تصویر شماره ۶).

سپس فرم نهایی پروتز با دقت بر روی جزئیات مانند پلکها و یافته‌های نرم تکمیل شد [۶]. در ادامه قالب سازی نهایی از پروتز و چشم پروتزی (اکریل گرما پخت اکروپارس) انجام شد و چشم در جای خود فیکس شد تا برای مراحل بعدی آماده باشد (تصویر شماره ۷).

جهت جای گزاری دقیق اکولار، فاصله مردمک سمت سالم تا خط تیغه بینی به وسیله دستگاه پی‌دی‌متر دیجیتال اندازه‌گیری

توابختنى

تصویر ۳. آماده سازی قالب اژیناتی برای ساخت قالب گچی

توابختنی

تصویر ۶. اصلاح قالب مومی با توجه به ظاهر سمت سالم

اعتماده‌نفس و بهبود کیفیت زندگی آن‌ها دارند. به عنوان مثال، استفاده از پروتزهای سیلیکونی و ایمپلنت‌های کرانیوفاسیال تأثیرات مثبت قابل توجهی در بهبود عملکرد اجتماعی و کاهش اضطراب روان‌شناختی بیماران نشان داده است [۵].

پروتزهای اوربیتال به عنوان راه حلی مؤثر برای بازسازی ظاهری و بهبود کیفیت زندگی بیماران مبتلا به نقص‌های اوربیتال شناخته می‌شوند. این روش با تأمین ظاهر طبیعی، افزایش اعتماده‌نفس، و کاهش اثرات روانی منفی، نقش مهمی در بازگشت بیماران به زندگی اجتماعی ایفا می‌کند. با تمرکز بر طراحی دقیق و مواد باکیفیت، می‌توان پروتزهایی سبک، زیبا شناسانه و راحت ارائه کرد که بدون نیاز به مداخلات پیچیده، نتایج مطلوبی به همراه داشته باشد. توجه به نیازهای فردی هر بیمار در فرآیند ساخت، کلید موفقیت این روش است [۸].

باید در نظر بگیریم هر بیماری با مشکلات خاص و جداگانه‌ایی به پروتزیست مراجعه می‌کند و در حین ساخت پروتز، در نظر گرفتن بسیاری از موارد ذکر شده ضروری می‌باشد. انتخاب یک نوع سیستم تعلیق برای چنین بیمارانی باید به گونه‌ایی باشد تا

توابختنی

تصویر ۵. قالب مومی دائز

خشک شدن و تلفیق بهتر رنگ‌ها در نظر گرفته شد (تصویر شماره ۹).

در آخرین مرحله، پروتز نهایی از لحاظ شکل، رنگ، اندازه محل قرارگیری، زاویه قرارگیری و تعلیق مناسب بر صورت بیمار ارزیابی شد و پس از اصلاحات و ایرادات، پروتز سیلیکونی برای استفاده به بیمار تحويل شد (تصویر شماره ۱۰).

بحث

توابختنی پروتزی سریع‌ترین روش بازسازی زیبایی ظاهری صورت در حد نرمال یا نزدیک به نرمال را پیشنهاد می‌کند و کمترین وقت و هزینه را برای بیمار خواهد داشت. به علاوه اینکه این روش خطر جراحی را به همراه ندارد. به جزء برای افرادی که برای فیت بهتر پروتز بر روی صورت، جراحی ابتدائی را در سطح آسیب باید انجام دهند [۶].

مطالعات اخیر بر اهمیت بازسازی اوربیتال با استفاده از پروتزهای سیلیکونی تأکید دارند. این روش‌ها نه تنها ظاهری طبیعی تر به بیماران ارائه می‌دهند، بلکه نقش کلیدی در بازگرداندن

توابختنی

تصویر ۸. ساخت قالب دوتکه و آماده‌سازی برای تزریق سیلیکون

توابختنی

تصویر ۷. فیکس کردن اکولار قبل از قالب‌سازی

توانبختنى

تصویر ۱۰. فیت نهایی پروتز

ظاهر طبیعی پروتئز

دومین فاکتوری که برای دستیابی به یک پروتئین ایدئال رعایت کرده‌یم، ظاهر طبیعی پروتئین بود. برای رسیدن به نتیجه بهتر در زیبایی پروتئین باشد ۲ اصل اساسی رعایت شود: فرم و رنگ

قیمت

مهمترین اصل در ظاهر پروتز این است که شکل فیزیکی و آناتومیکی ظاهری آن صحیح باشد. در مرحله مدل سازی با موم یا یاد به این اصل توجه زیادی داشته باشیم و به گونه ایی باشد که نهاده ننمایم ساختار آناتومیکی را به وضوح نشان دهد.

۱۰

رنگ هم به اندازه فرم، جزء یکی از مهم ترین فاکتورهایی است که در طبیعی تر نشان دادن پروتز مؤثر می باشد. رنگ استفاده شده بر روی پروتز باید شبیه به پوست فرد بیمار باشد. بنابراین، یکی از ارکان قضایت در خوب و بد بودن پروتز مسئله رنگ آن است. به منظور دستیابی به پروتزی که حالت زنده و طبیعی داشته باشد بایست عواملی را که در سطح قبل ذکر شد، در رأس کار خود قرار دهیم و انتخاب درست رنگ هم جزء یکی از فاکتورها می باشد. رنگ هایی که برای این کار مورد استفاده قرار داده بودیم رنگ آرایشی در مکالر و رنگ روغنی که نفاشان برای کار خود استفاده می کنند و ما از سه رنگ اصلی رنگ روغن برای این کار استفاده کردیم: قرمز، آبی و سبز.

نتیجہ گیری

مزایایی که می‌توان برای این روش ساخت پروتز ذکر کرد،
ز قبیل ساخت سریع و کاهش زمان درمان پروتزنی، سهولت
ستفاده از پروتز و درآوردن و پوشیدن راحت، عدم حساسیت
پوستی، افزایش عمر مفید پروتز، هزینه کمتر و در نهایت کاهش
مشکلات روحی و بازسازی ظاهری. با وجود این، نکته قابل ذکر این
ست که روش‌های معرفی شده در این مطالعه و مقالات برآمده
ز آن، در کنار بقیه روش‌ها قرار می‌گیرند و در نهایت همان‌طور که
قبل‌گفته شد، سبیاری از عوامل و امکانات و شرایط، انتخاب نوع
وش ساخت را پیش روی پروتزنیست قرار می‌دهد **[۵]**.

توضیحات

تصویر ۹. رنگ‌آمیزی ثانویه و آماده‌سازی پروتز

مشکل شان را حل کند و استفاده از آن آسان باشد.

مطالعه بر روی بیمارانی که تحت جراحی اوربیتال قرار گرفته‌اند، نشان می‌دهد بازسازی با پروتزها می‌تواند به طور قابل ملاحظه‌ای میزان افسردگی و اضطراب بیماران را کاهش داده و کیفیت زندگی آن‌ها را افزایش دهد [۹].

توصیف پروتئز ساخته شده

همان طور که ذکر کردیم، از اوربیتال فرد قالب‌گیری می‌شود و طبق مراحل گفته شده، پروتز ساخته می‌شود، اما برای دستیابی به یک پروتز صورت ایدئال باید ۳ اصل اساسی رعایت شود که عبارت‌اند از: به کارگیری یک نوع تعلیق راحت و آسان-ظاهر طبیعی پروتز- در نظر گرفتن استحکام پروتز [۲].

به کارگیری تعلیق راحت و آسان

اولین فاکتور اصلی برای دستیابی به پروتز صورت ایدئال، استفاده از روش نگهدارنده مناسب است تا اینکه پروتزا در جای درست خود قرار دهد و استفاده از آن آسان باشد. توجه به این نکته در ساخت پروتزا اهمیت بالایی برخوردار است و باید اولین فاکتوری باشد که قبل از شروع هر کاری برای ساخت پروتزا فک و صورت در نظر می‌گیریم. در انتخاب روش تعلیق، استفاده از پروتزا باید آسان، پوشیدن و درآوردن راحت، حساسیت پوستی نداشته باشد و باقیمانده عضو نیز حفظ گردد. جهت دستیابی به پروتزا با تعلیق مناسب به وزن، اندازه پروتزا و موقعیت خطوط خارجی سطح آسیب‌دیده ضروری است. وزن کلی پروتزا توسط ماده استفاده شده در ساخت پروتزا تعیین می‌شود؛ اما ساخت و مرحله مدل‌سازی با موم باید به گونه‌ایی انجام گیرد تا از مواد کمتری برای ساخت پروتزا استفاده کنیم. درنتیجه پروتزا سبک‌تر خواهد شد و تعلیق بهتری خواهیم داشت. اندازه پروتزا هم بستگی به نوع تعلیق دارد که برای پروتزا در نظر گرفته شده است.

ملاحظات اخلاقی

پیروی از اصول اخلاق پژوهش

در این مطالعه فرد هر زمان که می‌خواست می‌توانست از مطالعه خارج شود و از روند کار و گزارش مطلع بود. این طرح با کد اخلاق (IR.USWR.REC.1402.178) در [دانشگاه علوم توانبخشی و سلامت اجتماعی](#) تصویب شد.

حامی مالی

این مطالعه با حمایت مالی معاونت تحقیقات و فناوری دانشگاه [علوم توانبخشی و سلامت اجتماعی](#) انجام شده است.

مشارکت‌نویسندگان

مفهوم‌سازی، روش‌شناسی، منابع، نگارش و تهیه پیش‌نویس اصلی: همه نویسندگان: سرپرستی و نظارت: فاطمه زارع‌زاده و محمد علی مردانی.

تعارض منافع

بنابر اظهار نویسندگان، این مقاله تعارض منافع ندارد.

تشکر و قدردانی

از معاونت تحقیقات و فناوری دانشگاه علوم توانبخشی و سلامت اجتماعی و همچنین بیمار عزیز تقدیر و نشکر می‌شود.

References

- [1] Mai CT, Isenburg JL, Canfield MA, Meyer RE, Correa A, Alverson CJ, et al. National population-based estimates for major birth defects, 2010-2014. *Birth Defects Research*. 2019; 111(18):1420-35. [\[DOI:10.1002/bdr2.1589\]](https://doi.org/10.1002/bdr2.1589) [\[PMID\]](https://pubmed.ncbi.nlm.nih.gov/31744442/)
- [2] Dings JP, Merkx MA, de Clonie MacLennan-Naphausen MT, van de Pol P, Maal TJ, Meijer GJ. Maxillofacial prosthetic rehabilitation: A survey on the quality of life. *The Journal of Prosthetic Dentistry*. 2018; 120(5):780-6. [\[DOI:10.1016/j.prosdent.2018.03.032\]](https://doi.org/10.1016/j.prosdent.2018.03.032) [\[PMID\]](https://pubmed.ncbi.nlm.nih.gov/29607000/)
- [3] Mehdi ME, Atiqi OE, Yafi I, Benlaassel OA, Zinedine S, Geouatri M, et al. [Reconstruction of orbital exenteration defects: About 20 cases (French)]. *The Pan African Medical Journal*. 2022; 43:105. [\[DOI:10.11604/pamj.2022.43.105.26034\]](https://doi.org/10.11604/pamj.2022.43.105.26034) [\[PMID\]](https://pubmed.ncbi.nlm.nih.gov/35604300/)
- [4] Blessing NW, Rong AJ, Brian CT, Erickson BP, Lee BW, Johnson TE. Orbital bony reconstruction with presized and precontoured porous polyethylene-titanium implants. *Ophthalmic Plastic & Reconstructive Surgery*. 2021; 37(3):284-9. [\[DOI:10.1097/IOP.0000000000001829\]](https://doi.org/10.1097/IOP.0000000000001829) [\[PMID\]](https://pubmed.ncbi.nlm.nih.gov/33940700/)
- [5] Mardani MA, Zarezadeh F, Hashemi H. [Implant-based prosthetic reconstruction in patients with congenital ear defects (Persian)]. *Archives of Rehabilitation*. 2022; 23(3):450-63. [\[DOI:10.32598/RJ.23.3.2883.3\]](https://doi.org/10.32598/RJ.23.3.2883.3)
- [6] Subramaniam S, Breik O, Cadd B, Peart G, Wiesenfeld D, Heggie A, et al. Long-term outcomes of craniofacial implants for the restoration of facial defects. *International Journal of Oral and Maxillofacial Surgery*. 2018; 47(6):773-82. [\[DOI:10.1016/j.ijom.2018.01.013\]](https://doi.org/10.1016/j.ijom.2018.01.013) [\[PMID\]](https://pubmed.ncbi.nlm.nih.gov/29447000/)
- [7] Mardani MA, Arazpour M, Bani MA, Hutchins SW, Zarezadeh F, Sojodi M, et al. Prosthetic rehabilitation of a patient with partial ear amputation using a self suspension technique. *Prosthetics and Orthotics International*. 2011; 35(4):473-7. [\[DOI:10.1177/0309364611422269\]](https://doi.org/10.1177/0309364611422269) [\[PMID\]](https://pubmed.ncbi.nlm.nih.gov/21800000/)
- [8] Alberga J, Eggels I, Visser A, van Minnen B, Korfage A, Vissink A, et al. Outcome of implants placed to retain craniofacial prostheses-A retrospective cohort study with a follow-up of up to 30 years. *Clinical Implant Dentistry and Related Research*. 2022; 24(5):643-54. [\[DOI:10.1111/cid.13106\]](https://doi.org/10.1111/cid.13106) [\[PMID\]](https://pubmed.ncbi.nlm.nih.gov/35300000/)
- [9] Balakrishnan N, Agrawal S, Bhargava R, Jain V, Pushker N, Meel R, et al. Psychosocial factors among patients undergoing orbital exenteration. *Clinical and Experimental Optometry*. 2023; 106(6):626-32. [\[DOI:10.1080/08164622.2022.2106781\]](https://doi.org/10.1080/08164622.2022.2106781) [\[PMID\]](https://pubmed.ncbi.nlm.nih.gov/36300000/)